The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA‐based nanomaterials, and PA‐based polymeric materials. To the best of our knowledge, this is the first overview on PA‐based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
An orthogonal strategy was utilized
for synthesizing a novel water-soluble
pillar[5]arene (
m-TPEWP5) with tetraphenylethene-functionalized
on the bridged methylene group (meso-position) of
the pillararene skeleton. The obtained macrocycle exhibit both the
aggregation-induced emission (AIE) effect and interesting host–guest
property. Moreover, it can be made to bind with a tailor-made camptothecin-based
prodrug guest (DNS-G) to form AIE-nanoparticles based
on host–guest interaction and the fluorescence resonance energy
transfer process for fabricating a drug delivery system. This novel
type of water-soluble AIE-active macrocycle can serve as a potential
fluorescent material for cancer diagnosis and therapy. In addition,
the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating
novel supramolecular structures and functional materials.
A dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by C=C double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure. Three dinitrile derivatives with various linkers are designed as guests (G1, G2, and G3) to form host-guest assemblies with m-TPE Di-EtP5. The morphological control and fluorescence properties of the assemblies are successfully realized. G1 with a shorter alkyl chain as the linker completely threads into the cavities of the host. G2, due to its longer chain length, forms a linear supramolecular polymer upon binding to m-TPE Di-EtP5. G3 differs from G2 by possessing a bulky phenyl group in the middle of the chain, which can be further assembled with m-TPE Di-EtP5 to form supramolecular layered polymer and precipitated out in solution, and can be efficiently applied to photocatalytic reactions.
Herein, we have designed and fabricated a simple and efficient supramolecular self-assembled nanosystem based on host–guest interactions between water-soluble tetraphenylethylene-embedded pillar[5]arene (m-TPEWP5) and ammonium benzoyl-ʟ-alaninate (G) in an aqueous medium. The obtained assembly of m-TPEWP5 and G showed aggregation-induced emission (AIE) via the blocking of intramolecular phenyl-ring rotations and functioned as an ideal donor. After the loading of eosin Y (EsY) as acceptor on the surface of the assembly of m-TPEWP5 and G, the worm-like nanostructures changed into nanorods, which facilitates a Förster resonance energy transfer (FRET) from the m-TPEWP5 and G assembled donor to the EsY acceptor present in the nanorod assembly. The system comprising m-TPEWP5, G and EsY displayed moderate FRET efficiency (31%) at a 2:1 molar ratio of donor-to-acceptor. Moreover, the obtained supramolecular nanorod assembly could act as a nanoreactor mimicking natural photosynthesis and exhibited a high catalytic efficiency for the photocatalytic dehalogenation reaction of various bromoketone derivatives with good yields in short reaction time in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.