The important role of Ca 2+ in pathogenic store-operated calcium entry (SOCE) is well-established. Among the proteins involved in the calcium signaling pathway, Stromal interacting molecule 1 (STIM1) is a critical endoplasmic reticulum transmembrane protein. STIM1 is activated by the depletion of calcium stores and then binds to another calcium protein, Orai1, to form a channel through which the extracellular Ca 2+ can enter the cytoplasm to replenish the calcium store. Multiple studies have shown that increased STIM1 facilitates the aberrant proliferation and apoptosis of vascular smooth cells (VSMC) and macrophages which can promote the formation of rupture-prone plaque. Together with regulating the cytosolic Ca 2+ concentration, STIM1 also activates STING through altered intracellular Ca 2+ concentration, a critical pro-inflammatory molecule. The cGAS-STING pathway is linked with cellular proliferation and phenotypic conversion of VSMC and enhances the progression of atherosclerosis plaque. In summary, we conclude that STIM1/cGAS-STING is involved in the progression of AS and plaque vulnerability.
As an innate immune route of defense against microbial infringement, cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS)- stimulator of interferon genes (STING) signaling does not simply participate in amplifying inflammatory responses via releasing type-I interferon (IFN) or enhance the expression of pro-inflammatory genes, but also interplays with multifarious pathophysiological activities, such as autophagy, apoptosis, pyroptosis, ferroptosis, and senescence in a broad repertoire of cells like endothelial cells, macrophages and cardiomyocyte. Thus, the cGAS-STING pathway is closely linked with aberrant heart morphologically and functionally via these mechanisms. The past few decades have witnessed an increased interest in the exact relationship between the activation of the cGAS-STING pathway and the initiation or development of certain cardiovascular diseases (CVD). A group of scholars has gradually investigated the perturbation of myocardium affected by the overactivation or suppression of the cGAS-STING. This review focuses on how the cGAS-STING pathway interweaves with other pathways and creates a pattern of dysfunction associated with cardiac muscle. This sets treatments targeting the cGAS-STING pathway apart from traditional therapeutics for cardiomyopathy and achieves better clinical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.