The adsorptions of toxic gases SO2 and H2S on 2D α/β/γ-FeB6 monolayer were investigated using density functional theory calculations. To analyze the interaction between gas molecule H2S/SO2 and α/β/γ-FeB6 monolayer, we calculated adsorption energy, adsorption distance, Mullikan charge, charge density difference, band structure, density of states, work function and theoretical recovery time. The adsorption energies show that H2S/SO2 is chemisorbed on α/β-FeB6 while H2S/SO2 is physiosorbed on γ-FeB6 monolayer. As a result, γ-FeB6 has short recover time for H2S (3.40×10− 4 s)/SO2 (5.09×10− 3 s) due to modest adsorption. Therefore, γ-FeB6 may be a promising candidate for reusable H2S/SO2 sensor at room temperature. Although H2S is chemisorbed on α/β-FeB6, as the working temperature rises to 500 K, the recovery time of α/β-FeB6 for H2S can decrease to 1.34×10− 2 s and 5.23×10− 1 s, respectively, which are well within the detectable range. So, α/β-FeB6 monolayer also may be good candidate for H2S gas sensor.
In order to improve the performance of magnetorheological dampers under impact load, a double-rod magnetorheological damper is designed in this paper, and its multi-physical field coupling model is established. The performance of a double-rod magnetorheological damper under impact conditions is characterized from the aspects of viscosity, velocity, peak pressure, impact energy consumption and viscous damping force ratio. The research contents include: a comparison of dynamic characteristics such as the viscosity, velocity and pressure of the magnetorheological damper under impact conditions and low-speed vibration; the influence of temperature on the mechanical performance parameters of the magnetorheological damper, such as peak pressure, impact energy dissipation and viscous damping force ratio, under impact load; and the establishment of a peak sensitivity function to study the influence of three key structural parameters on the magnetic flux density and impact energy dissipation at the damper damping channel. On the basis of the above theoretical research, an impact test of the processed double-rod magnetorheological damper prototype under different excitation currents is carried out. The results show that the viscosity distribution of the damping channel activation region (i.e., the region where the magnetorheological effect occurs after energization) of the magnetorheological damper under impact is disordered, the region of the structural flow in the semi-solid state is small and the influence of the Coulomb damping force is greatly weakened. When the current is 0.5 A, the viscous damping force accounts for 91.2%, and the viscous damping force plays a major role in buffering energy absorption. With an increase in working temperature, the effect of the Coulomb damping force decreases, and the peak pressure and impact energy consumption of the MR damper decrease greatly. With increasing excitation current, this reduction is further increased. The influence of gap height, piston diameter and effective length on magnetic flux density and impact energy dissipation is determined via the peak sensitivity function. When the change in the structural parameters ∆α is 30%, the change in the piston diameter has the greatest influence on the peak sensitivity of the magnetic flux density, and the peak sensitivity index of the magnetic flux density reaches 25%. The change in clearance height has the greatest influence on the impact energy consumption, and the peak sensitivity index of the impact energy consumption reaches 115%. This shows that the magnetic flux density is most affected by the piston diameter, and the impact energy consumption is most affected by the clearance height. The test results show that the test pressure peak-change curve is consistent with the simulation pressure peak-change curve, and the pressure peak error between the two is within 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.