Visual ship tracking provides crucial kinematic traffic information to maritime traffic participants, which helps to accurately predict ship traveling behaviors in the near future. Traditional ship tracking models obtain a satisfactory performance by exploiting distinct features from maritime images, which may fail when the ship scale varies in image sequences. Moreover, previous frameworks have not paid much attention to weather condition interferences (e.g., visibility). To address this challenge, we propose a scale-adaptive ship tracking framework with the help of a kernelized correlation filter (KCF) and a log-polar transformation operation. First, the proposed ship tracker employs a conventional KCF model to obtain the raw ship position in the current maritime image. Second, both the previous step output and ship training sample are transformed into a log-polar coordinate system, which are further processed with the correlation filter to determine ship scale factor and to suppress the negative influence of the weather conditions. We verify the proposed ship tracker performance on three typical maritime scenarios under typical navigational weather conditions (i.e., sunny, fog). The findings of the study can help traffic participants efficiently obtain maritime situation awareness information from maritime videos, in real time, under different visibility weather conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.