Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.
Objectives: Myocardial infarction (MI) commonly occurs in patients with coronary artery disease and have high mortality. Current clinical strategies for MI still limited to reducing the death of myocardial cells but failed to replace these cells. This study aimed to investigate the role of fibroblast growth factor 6 (FGF6) in enhancing the proliferative potential of cardiomyocytes (CMs) after ischemic injury via the Hippo pathway.Materials and Methods: Expression of FGF6 protein was analysed in mice with MI induced by ligation of the left anterior descending coronary artery. Activation of the Hippo pathway and the proliferation potential were examined in ischemic CMs, treated with FGF6 protein or transfected with an adeno-virus carrying FGF6 sh-RNA.Immunofluorescence staining and western blotting were performed to assess the relationship between FGF6 and the Hippo pathway.Results: We found that FGF6 expression was significantly increased in the MI mouse model. Knockdown of FGF6 synthesis resulted in poorer heart function after MI. By contrast, treatment with recombinant human FGF6 protein improved heart function, reduced infarct size, and promoted cardiac repair. Additionally, FGF6 restrains the activation of the Hippo pathway and subsequently promotes nuclear accumulation of YAP. This was largely counteracted by treatment with extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126.
Studies of diabetic glomerular injury raise the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, it is found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effects. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of diabetic nephropathy via promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis via Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. Acting as a potential therapeutic target for prevention and control of T2DN, mechanistically understanding of the biofunction of FGF13 may also be of relevance to the pathogenesis of other FGF13- and Parkin-associated diseases
Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/−) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.