We report the near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under 980, 1550 and 800 nm excitations, respectively. Using a 980 nm laser diode pump, enhanced 1.5 and 2.7 μm emissions from Er3+:I13/2→4I15/2 and I11/2→4I13/2 transitions are observed, in which Yb3+ ions can increase pumping efficiency and be used as energy transfer donors. Meanwhile, Yb3+ can also be used as an acceptor and intensive upconversion luminescence of around 1000 nm is achieved from Er3+:I11/2→4I15/2 and Yb3+: F5/2→4F7/2 transitions using 1550 nm excitation. In addition, the luminescence properties and variation trendency by 800 nm excitation is similar to that using 1550 nm excitation. The optimum Er3+ and Yb3+ ion ratio is 1:1.5 and excess Yb3+ ions decrease energy transfer efficiency under the two pumpings. These results indicate that Er3+/Yb3+ co-doped fluorotellurite glasses are potential middle- infrared laser materials and may be used to increase the efficiency of the silicon solar cells.
AlF3-based glasses (AlF3-YF3-CaF2-BaF2-SrF2-MgF2) with enhanced thermal and chemical stability were synthesized and compared with the well-known fluorozirconate glass (ZBLAN). The 2.7 μm mid-infrared emission in the AlF3-based glasses was also investigated through the absorption and emission spectra. Both the temperature of glass transition and the characteristic temperatures (ΔT, Hr, kgl) of the fluoroaluminate glasses were much larger than those of the ZBLAN glasses. The corrosion phenomenon can be observed by naked-eye, and the transmittance dropped dramatically (0% at 3 μm) when the ZBLAN glass was placed into distilled water. However, the AlF3-based glass was relatively stable. The fluoroaluminate glasses possessed large branching ratio (20%) along with the emission cross section (9.4×10−21 cm−2) of the Er3+:4I11/2→4I13/2 transition. Meanwhile, the enhanced 2.7 μm emission in highly Er3+-doped AYF glass was obtained. Therefore, these results showed that this kind of fluoride glass has a promising application for solid state lasers at 3 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.