The incidence of lower limb amputation has increased in recent years. Prosthesis is the most important assistive device to compensate for limb defects in amputation patients and restore their abilities. The prosthetic socket is a key component connecting the residual limb and the prosthesis, with a direct effect on the function of the prosthesis and the patient’s comfort. As prosthetic socket design relies on the personal experience of prosthetists, this study explored an optimized prosthetic socket design method that combined the experiences of multiple prosthetists. The eigenvector algorithm was adopted to optimize the factors influencing prosthetic socket design and their quantitative compensations based on the design experience of prosthetists. Clinical assessments indicated that the proposed socket design method substantially improved fitting effects. This quantitative compensation design for prosthetic sockets will help overcome the limitations of traditional prosthetic socket design, which will be of great importance in improving the design accuracy and efficiency of prosthetic sockets.
With the vigorous promotion of national and local policies, the number of electric vehicles has been greatly increased, and orderly charging has gradually become an effective means to relieve the pressure of charging and capacity. In order to enhance the participation of charging load aggregators and charging users, improve the effectiveness of orderly charging, and realize the win-win situation between the aggregators and users, in this paper, firstly, the analysis of charging station benefit model is carried out from two aspects of charging station operation cost and compensation price, and then the user charging supplement mechanism based on response mechanism is studied and finally through simulation examples, different scenarios of charging equipment utilization are set, and the benefits of charging load aggregators and charging users are analysed, which provides suggestions for charging load aggregators to choose appropriate user compensation scheme under orderly charging mode.
The root mean square (RMS) of the surface electromyography (sEMG) signal can respond to neuromuscular function, which displays a positive correlation with muscle force and muscle tension under positive and passive conditions, respectively. The purpose of this study was to investigate the changes in muscle force and tension after multilevel surgical treatments, functional selective posterior rhizotomy (FSPR) and tibial anterior muscle transfer surgery, and evaluate their clinical effect in children with spastic cerebral palsy (SCP) during walking. Children with diplegia (n = 13) and hemiplegia (n = 3) with ages from 4 to 18 years participated in this study. They were requested to walk barefoot at a self-selected speed on a 15-m-long lane. The patient's joints' range of motion (ROM) and sEMG signal of six major muscles were assessed before and after the multilevel surgeries. The gait cycle was divided into seven phases, and muscle activation state can be divided into positive and passive conditions during gait cycle. For each phase, the RMS of the sEMG signal amplitude was calculated and also normalized by a linear envelope (10-ms running RMS window). The muscle tension of the gastrocnemius decreased significantly during the loading response, initial swing, and terminal swing (p < 0.05), which helped the knee joint to get the maximum extension when the heel is on the ground and made the heel land smoothly. The muscle force of the gastrocnemius increased significantly (p < 0.05) during the mid-stance, terminal stance, and pre-swing, which could generate the driving force for the human body to move forward. The muscle tension of the biceps femoris and semitendinosus decreased significantly (p < 0.05) during the terminal stance, pre-swing, and initial swing. The decreased muscle tension could relieve the burden of the knee flexion when the knee joint was passively flexed. At the terminal swing, the muscle force of the tibial anterior increased significantly (p < 0.05), which could improve the ankle dorsiflexion ability and prevent foot drop and push forward. Thus, the neuromuscular function of cerebral palsy during walking can be evaluated by the muscle activation state and the RMS of the sEMG signal, which showed that multilevel surgical treatments are feasible and effective to treat SCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.