Post-translational modification via small ubiquitin-like modifier (SUMO) is involved in the regulation of various important cellular processes. SUMO modification can be regulated at the level of conjugation, and can also be reversed by the SUMO-specific proteases (SENPs). However, current studies of the regulation and function of SENP in lung development remain limited. In this study, the expression levels of SENP1 and SUMO1 were assessed during lung development in rats. SUMO1 modification occurred during lung development and changes in SENP1 expression were consistent with the changes in the presence of free SUMO1. In order to investigate the function of SENP1, alveolar type (AT) 2 cells were transfected with SENP1-targeting small interfering RNA, and the proliferation, apoptosis and differentiation function of AT2 cells was subsequently evaluated. Marked upregulation of conjugated SUMO1 was observed following SENP1 inhibition. Furthermore, depletion of SENP1 resulted in increased apoptosis, decreased proliferation and impaired differentiation status of AT2 cells. Thus, the results support that SENP1 is an essential regulator of the balance between SUMOylation and deSUMOylation during lung development, specifically affecting the proliferation and differentiation status of AT2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.