Dodecyltrimethoxysilane (DTMOS), which is a silanation modifier, was grafted onto nanocellulose crystals (NCC) through a two-step method using KH560 (ɤ-(2,3-epoxyproxy)propytrimethoxysilane) as a linker to improve the hydrophobicity of NCC. The reaction mechanism of NCC with KH560 and DTMOS and its surface chemical characteristics were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and HCl–acetone titration. These analyses confirmed that KH560 was grafted onto the surface of NCC through the ring-opening reaction, before DTMOS was covalently grafted onto the surface of NCC using KH560 as a linker. The grafting of NCC with DTMOS resulted in an improvement in its hydrophobicity due to an increase in its water contact angle from 0° to about 140°. In addition, the modified NCC also possessed enhanced thermal stability.
Poor compatibility between nanocellulose crystals (NCCs) and major polymers has limited the application of NCC as bio-reinforcements. In this work, an effective and ultra-fast method was investigated to significantly improve the hydrophobicity of NCC by using poly(methylhydrogen)siloxane (PMHS) as modifier. PMHS possessed amounts of reactive –Si–H groups and hydrophobic –CH3 groups. The former groups were reactive with the hydroxyl groups of NCC, while the latter groups afforded NCC very low surface energy. As the weight ratio of PMHS to NCC was only 0.0005%, the hydrophobicity of NCC was significantly improved by increasing the water contact angle of NCC from 0° to 134°. The effect of weight ratio of PMHS to NCC and the hydrogen content of –Si–H in PMHS on the hydrophobicity and thermal stability was investigated in detail by Fourier transform infrared spectroscopy (FTIR), (X-ray Diffraction) XRD and (thermogravimetric analysis) TGA. The results indicated that PMHS chains were covalently grafted onto NCC and PMHS modification improved the thermal stability of NCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.