A nonribosomal peptide synthetase (NRPS) gene cluster (sfa) was identified in Streptomyces thioluteus to direct the biosynthesis of the diisonitrile antibiotic SF2768. Its biosynthetic pathway was reasonably proposed based on bioinformatics analysis, metabolic profiles of mutants, and the elucidation of the intermediate and shunt product structures. Bioinformatics-based alignment found a putative ATP-binding cassette (ABC) transporter related to iron import within the biosynthetic gene cluster, which implied that the product might be a siderophore. However, characterization of the metal-binding properties by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), metal-ligand titration, thin-layer chromatography (TLC), and chrome azurol S (CAS) assays revealed that the final product SF2768 and its diisonitrile derivatives specifically bind copper, rather than iron, to form stable complexes. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that the intracellular cupric content of S. thioluteus significantly increased upon incubation with the copper-SF2768 complex, direct evidence for the copper acquisition function of SF2768. Further in vivo functional characterization of the transport elements for the copper-SF2768 complexes not only confirmed the chalkophore identity of the compound but also gave initial clues into the copper uptake mechanism of this nonmethanotrophic microorganism.
Emerging data suggest that urolithins, gut microbiota metabolites of ellagitannins, contribute toward multiple health benefits attributed to ellagitannin-rich foods, including walnuts, red raspberry, strawberry, and pomegranate. However, there is limited data on whether the potential neuroprotective effects of these ellagitannin-rich foods are mediated by urolithins. Herein, we evaluated the potential mechanisms of antineuroinflammatory effects of urolithins (urolithins A, B, and C; 8-methyl-O-urolithin A; and 8,9-dimethyl-O-urolithin C) in BV2 murine microglia in vitro. Nitrite analysis and qRT-PCR suggested that urolithins A and B reduced NO levels and suppressed mRNA levels of pro-inflammatory genes of TNF-α, IL-6, IL-1β, iNOS, and COX-2 in LPS-treated microglia. Western blot revealed that urolithins A and B decreased phosphorylation levels of Erk1/2, p38 MAPK, and Akt, prevented IκB-α phosphorylation and degradation, and inhibited NF-κB p65 subunit phosphorylation and nuclear translocation in LPS-stimulated microglia. Our results indicated that urolithins A and B attenuated LPS-induced inflammation in BV2 microglia, which may be mediated by inhibiting NF-κB, MAPKs (p38 and Erk1/2), and Akt signaling pathway activation. The antineuroinflammatory activities of urolithins support their role in the potential neuroprotective effects reported for ellagitannin-rich foods warranting further in vivo studies on these ellagitannin gut microbial derived metabolites.
In a continuing search for novel bioactive compounds from marine mangrove plants, seven new naphthoquinone derivatives were isolated from Avicennia marina, namely, avicennone A (1), avicennone B (2), avicennone C (3), avicennone D (4), avicenone E (5), avicennone F (6), and avicennone G (7), along with the known compounds avicequinone A (8), stenocarpoquinone B (9), avicequinone C (10), avicenol A (11), and avicenol C (12). The chemical structures of 1-7 were elucidated by spectroscopic methods. Compounds 8-10, and a mixture of 4 and 5, which all contain a 4,9-dione group, showed strong antiproliferative and moderate cytotoxic activities, as well as antibacterial effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.