Background:: Ultrasound test is one of the routine tests for the diagnosis of thyroid cancer. The diagnosis accuracy depends largely on the correct interpretation of ultrasound images of thyroid nodules. However, human eye-based image recognition is usually subjective and sometimes error-prone especially for less experienced doctors, which presents a need for computeraided diagnostic systems. Objective: : To our best knowledge, there is no well-maintained ultrasound image database for the Chinese population. In addition, though there are several computational methods for image-based thyroid cancer detection, a comparison among them is missing. Finally, the effects of features like the choice of distance measures have not been assessed. The study aims to give the improvement of these limitations and proposes a highly accurate image-based thyroid cancer diagnosis system, which can better assist doctors in the diagnosis of thyroid cancer. Methods:: We first establish a novel thyroid nodule ultrasound image database consisting of 508 images collected from the Third Hospital of Hebei Medical University in China. The clinical information for the patients is also collected from the hospital, where 415 patients are diagnosed to be benign and 93 are malignant by doctors following a standard diagnosis procedure. We develop and apply five machine learning methods to the dataset including deep neural network, support vector machine, the center clustering method, k-nearest neighbor, and logistic regression. Results:: Experimental results show that deep neural network outperforms other diagnosis methods with an average cross-validation accuracy of 0.87 in 10 runs. Meanwhile, we also explore the performance of four image distance measures including the Euclidean distance, the Manhattan distance, the Chebyshev distance, and the Minkowski distance, among which the Chebyshev distance is the best. The resource can be directly used to aid doctors in thyroid cancer diagnosis and treatment. Conclusions: : The paper establishes a novel thyroid nodule ultrasound image database and develops a high accurate image-based thyroid cancer diagnosis system which can better assist doctors in the diagnosis of thyroid cancer.
This paper studies contrastive divergence (CD) learning algorithm and proposes a new algorithm for training restricted Boltzmann machines (RBMs). We derive that CD is a biased estimator of the log-likelihood gradient method and make an analysis of the bias. Meanwhile, we propose a new learning algorithm called average contrastive divergence (ACD) for training RBMs. It is an improved CD algorithm, and it is different from the traditional CD algorithm. Finally, we obtain some experimental results. The results show that the new algorithm is a better approximation of the log-likelihood gradient method and outperforms the traditional CD algorithm.
Contrastive Divergence has become a common way to train Restricted Boltzmann Machines; however, its convergence has not been made clear yet. This paper studies the convergence of Contrastive Divergence algorithm. We relate Contrastive Divergence algorithm to gradient method with errors and derive convergence conditions of Contrastive Divergence algorithm using the convergence theorem of gradient method with errors. We give specific convergence conditions of Contrastive Divergence learning algorithm for Restricted Boltzmann Machines in which both visible units and hidden units can only take a finite number of values. Two new convergence conditions are obtained by specifying the learning rate. Finally, we give specific conditions that the step number of Gibbs sampling must be satisfied in order to guarantee the Contrastive Divergence algorithm convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.