Aspirin, one of the most commonly used anti-inflammatory drugs, has been recently reported to display multiple effects in the central nervous system (CNS), including neuroprotection and upregulation of ciliary neurotrophic factor (CNTF) expression in astrocytes. Although it was most recently reported that aspirin could promote the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) after white matter lesion, the underlying mechanisms remain unclear. To dissect the effects of aspirin on oligodendroglial development and explore possible mechanisms, we here demonstrated the following: (i) in vitro treatment of aspirin on OPC cultures significantly increased the number of differentiated oligodendrocytes (OLs) but had no effect on the number of proliferative OPCs, indicating that aspirin can promote OPC differentiation but not proliferation; (ii) in vivo treatment of aspirin on neonatal (P3) rats for 4 days led to a nearly twofold increase in the expression of myelin basic protein (MBP), devoid of change in OPC proliferaion, in the corpus callosum (CC); (iii) finally, aspirin treatment increased the phosphorylation level of β-catenin and counteracted Wnt signaling pathway synergist QS11-induced suppression on OPC differentiation. Together, our data show that aspirin can directly target oligodendroglial lineage cells and promote their differentiation through inhibition of Wnt/β-catenin signaling pathway. These findings suggest that aspirin may be a novel candidate for the treatment of demyelinating diseases.
An efficient Au(I)-catalyzed intramolecular
cascade reaction of
tertiary enamides tethered an alkynyl group has been developed. The
process is composed of a propargyl-claisen rearrangement and 5-exo-dig cyclization. This protocol provided a powerful method
for the preparation of a variety of pentasubstituted pyrroles derivatives
with excellent functional group tolerance in excellent yields. Scale-up
experiment and chemical transformations of products exhibited the
versatility of tertiary enamides in organic synthesis again.
Inhibition of oxidative stress and inflammation in vascular endothelial cells (ECs) may represent a new therapeutic strategy against endothelial activation. Sinapic acid (SA), a phenylpropanoid compound, is found in natural herbs and high-bran cereals and has moderate antioxidant activity. We aimed to develop new SA agents with the properties of antioxidation and blocking EC activation for possible therapy of cardiovascular disease. We designed and synthesized 10 SA derivatives according to their chemical structures. Preliminary screening of the compounds involved scavenging hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH × ), croton oil-induced ear edema in mice, and analysis of the mRNA expression of adhesion molecules in ECs. 1-Acetyl-sinapic acyl-4-(39-chlorine-)benzylpiperazine (SA9) had the strongest antioxidant and anti-inflammatory activities both in vitro and in vivo. Thus, the effect of SA9 was further studied. SA9 inhibited tumor necrosis factor a-induced upregulation of adhesion molecules in ECs at both mRNA and protein levels, as well as the consequent monocyte adhesion to ECs. In vivo, result of face-toface immunostaining showed that SA9 reduced lipopolysaccharideinduced expression of intercellular adhesion molecule-1 in mouse aortic intima. To study the molecular mechanism, results from luciferase assay, nuclear translocation of NF-kB, and Western blot indicated that the mechanism of the anti-inflammatory effects of SA9 might be suppression of intracellular generation of ROS and inhibition of NF-kB activation in ECs. SA9 is a prototype of a novel class of antioxidant with anti-inflammatory effects in ECs. It may represent a new therapeutic approach for preventing endothelial activation in cardiovascular disorders.
A concise manganese(III)-promoted stereoselective β-phosphorylation of acyclic tertiary enamides and diverse H-phosphine oxides was achieved. This reaction proceeds with absolute E-selectivity in contrast to Z-selectivity obtained in other previous works...
Different Lewis acid promotor-steered highly regioselective
phosphorylation
of tertiary enamides with diverse H-phosphonates or H-phosphine oxides
was developed. Under the catalysis of iron salt, the phosphonyl group
was introduced into the α-position of tertiary enamides, affording
various α-phosphorylated amides in high efficiency. On the other
hand, the β-phosphorylated tertiary enamides were efficiently
obtained as the products in the presence of manganese(III) acetylacetonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.