This paper develops a multiple response surfaces approach to approximate the limit state function for slope failure by second-order polynomial functions, to incorporate the variation of the most probable slip surfaces, and to evaluate the slope failure probability p f . The proposed methodology was illustrated through a cohesive soil slope example. It is shown that the p f values estimated from multiple response surfaces agree well with those p f values that have been obtained by searching a large number of potential slip surfaces in each Monte Carlo simulation (MCS) sample.The variation of number of the most probable slip surfaces is studied at different scale of fluctuation (λ) values. It is found that when full correlation assumed for each of random fields (i.e., spatial variability is ignored), the number of the most probable slip surfaces is equal to the number of random fields (in this study, it is 3). When the spatial variability grows significantly, the number of the most probable slip surfaces or number of multiple response surfaces firstly increases evidently to a higher value and then varies slightly. In addition, the contribution of a specific most probable slip surface varies dramatically at different spatial variability level, and therefore, the variation of the most probable slip surfaces should be accounted for in the reliability analysis. The multiple response surfaces approach developed in this paper provides a limit equilibrium method and MCS-based means to incorporate such a variation of the most probable slip surfaces in slope reliability analysis.
A new version of particle swarm optimization (PSO) called discontinuous flying particle swarm optimization (DFPSO) was proposed, where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value. The effect of population size on the results was investigated. The results obtained by DFPSO have an average difference of 6% compared with those by PSO, whereas DFPSO consumes much less evaluations of objective function than PSO does.
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.