Faba bean (Vicia faba L.) is an important food legume crop. Salinity soils severely constrain the production of faba bean, however, the seed germination of faba bean, which is a vital plant growth stage, is sensitive to salinity. Planting improved varieties of faba bean, which exhibit salt tolerance in seed germination stage, is an optimal strategy for faba bean product. To investigate the genes dynamics during the seed germination stage under salinity, RNA-seq method was used to investigate genome-wide transcription profiles of two faba bean varieties with contrast salt-tolerance during the seed germination. A total of 4,486 differentially expressed genes (DEGs) were identified among the comparison of salt-tolerant variety Y134 and salt-sensitive variety Y078 treated with salinity or not. Of these, 1,410 candidate DEGs were identified as salt-stress response genes. Furthermore, 623 DEGs were identified as variety-specific response gene during seed germination at 16 h or 24 h with salt treatment. Based on the pathway enrichment according to the Kyoto Encyclopedia of Genes and Genomes database (KEGG), these DEGs involving in cell wall loosening (e.g., xyloglucan endotransglucosylase/hydrolase, chitinase, and expansin), hormone metabolism (e.g., LEA genes, genes associated with ABA or ethylene signal pathway), chromatin remodeling (e.g., chromatin structure proteins, LHP1), small interfering RNA pathway, etc., were significantly up-regulated in salt-tolerance variety with salt treatment, indicating that they play critical roles in regulation of seed germination. The results indicated that a clearer mechanism of gene regulation that regulates the seed germination responding to salinity in faba bean. These findings are helpful to increase the understanding of the salt tolerance mechanism of crops during seed germination, and provide valuable genetic resource for the breeding of salt-tolerant faba bean varieties in future.
The full-length single-molecular sequencing and short reads Illumina sequencing were combined to generate the transcripts of adzuki bean with high-quality. A total of 17,636 loci and 60,454 transcripts were detected in this study. To characterize the drought-responsive genes during seed germination in adzuki bean, two varieties, i.e., tolerant and sensitive to drought stress, were selected to conduct analysis of alternative splicing dynamics (AS) and differentially expressed genes (DEGs) by combining the newly assembled draft genome and public adzuki bean reference genome. AS analysis indicated that both the two varieties underwent a little more AS events under control conditions than under drought stress. Among the AS events, IR (intron retention) predominately accounted for 34.3%, whereas AD (alternative donor site) was the least frequent with 15.8%. Meanwhile, 562 long non-coding RNAs, 409 fusion genes and 1208 transcription factors were identified. Moreover, a total of 5,337 DEGs were identified in comparison of the two varieties with drought or control treatments. Notably, 82 DEGs were discovered in the two varieties under drought stress, which might be the candidate in regulation of seed germination to answer for different drought tolerance. The DEGs encoded proteins involved in primary or second metabolism, plant hormone signal transduction, transcript or translation processes, ubiquitin proteasome system, transcription factor, transporters, and so on. The results facilitate to increase the knowledge about the mechanism of drought tolerance during crop seed germination, and provide reference for the breeding of drought-tolerant adzuki bean.
Adzuki bean is an important legume crop due to its high-quality protein, fiber, vitamins, minerals as well as rich bioactive substances. However, it is vulnerable to drought at the germination stage. However, little information is available about the genetic control of drought tolerance during seed germination in adzuki bean. In this study, some differential expression proteins (DEPs) were identified during seed germination between the drought-tolerant variety 17235 and drought-sensitive variety 17033 in adzuki bean using iTRAQ method. A total of 2834 proteins were identified in the germinating seeds of these two adzuki beans. Compared with the variety 17033, 87 and 80 DEPs were increased and decreased accumulation in variety 17235 under drought, respectively. Meanwhile, in the control group, a few DEPs, including 9 up-regulated and 21 down-regulated proteins, were detected in variety 17235, respectively. GO, KEGG, and PPI analysis revealed that the DEPs related to carbohydrate metabolism and energy production were significantly increased in response to drought stresses. To validate the proteomic function, the ectopic overexpression of V-ATPase in tobacco was performed and the result showed that V-ATPase upregulation could enhance the drought tolerance of tobacco. The results provide valuable insights into genetic response to drought stress in adzuki bean, and the DEPs could be applied to develop biomarkers related to drought tolerant in adzuki bean breeding projects.
Adzuki bean is famous as its high-quality protein, fiber, vitamins, minerals as well as rich bioactive substances. However, it is vulnerable to drought at the germination stage. Up to date, little information is available about the genetic controls of drought tolerance during seed germination in adzuki bean. In this study, differential expression proteins(DEPs)were identified based on iTRAQ technology during seed germination between the drought-tolerant variety 17235 and drought-sensitive variety 17033 in adzuki bean. A total of 2834 proteins were identified in the two adzuki bean in the germinating seeds. Eighty-seven and eighty DEPs were increased and decreased accumulation in variety 17235 compared to 17033 under drought, respectively. Meanwhile, 132/205 and 144/123 DEPs were up- or down-regulated in 17235 and 17033 under drought compared to the control, respectively. GO, KEGG, and PPI analysis revealed that the proteins related to carbohydrate metabolism and energy production showed abundantly increase in response to drought stresses. Ectopic overexpression of one candidate encoding V-ATPase in tobacco enhanced the drought tolerance of plants. The results provide valuable insights into adzuki bean response to drought stress, and the DEPs might be applied to develop drought tolerant adzuki bean in breeding programs.
Mungbean is a warm-season annual food legume and plays important role in supplying food and nutritional security in many tropical countries. However, the genetic basis of its agronomic traits remains poorly understood. Therefore, we resequenced 558 Chinese mungbean landraces and produced a comprehensive map of mungbean genomic variation. We classified the 558 landraces into two distinct subpopulations, which exhibited strong geographic distribution patterns, and then phenotyped all landraces in six different environments. Genome-wide association studies (GWAS) produced 110 signals significantly associated with nine agronomic traits, for which several candidate genes were identified. Overall, this study provides new insight into the genetic architecture of mungbean agronomic traits. Moreover, the genome-wide variations identified here should be valuable resources for future breeding studies of this important food legume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.