A class-specific molecularly imprinted polymer (MIP) for selectively extracting four tropane alkaloids has been prepared using anisodine, methacrylic, and trimethylolpropane trimethacrylate as template, functional monomer and crosslinker, respectively.
Field trials were carried out in three provinces of China to study the dissipation and residue of forchlorfenuron in citrus fruits. The results had shown that the degradation rate of forchlorfenuron in citrus fruits followed the first-order kinetics equation C = A∙eBt. The half-lives of forchlorfenuron were 15.8-23.0 days, the final residues of forchlorfenuron in pulp were all ≤0.002 mg/kg, and most of the residues were concentrated in the peel. The risk assessment revealed that no significant potential health risk would be induced by forchlorfenuron in citrus fruits. Therefore, it could be safe to apply forchlorfenuron in citrus fruits, and the results of this study could also be regarded as a reference to the setting of maximum residue limit for forchlorfenuron in citrus fruits in China.
The dissipation, residues, and risks of 2,4-dicholrophenoxyacetic acid (2,4-D) in citrus under field condition were investigated based on a simple ultra-performance LC (UPLC)-MS/MS method. The results indicated that the residue level of 2,4-D in citrus did not degrade gradually with sampling time under field condition. At pre-harvest intervals (PHI) of 20-40 days, 2,4-D residues were 0.021-0.269 mg/kg in citrus flesh, 0.028-0.337 mg/kg in whole citrus, and 0.028-0.376 mg/kg in citrus peel, all bellow the China maximum residue limit in citrus (1 mg/kg). Risks of 2,4-D were assessed by calculation of risk quotient, and the results revealed no significant health risks after consumption of citrus.
The effect of home processing on the residues of spirotetramat and its four metabolites (B-enol, B-glu, B-mono and B-keto) in citrus marmalade is comprehensively investigated in this paper by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A five-fold recommended dose of spirotetramat was applied to citrus fruit under field conditions and the processing included five steps: washing, peeling, pre-treatment for peel, mixing and boiling. The results showed that spirotetramat was the predominant component detected in unprocessed citrus, accounting for 64%. All the detected residues were primarily deposited on citrus peel, except for B-enol which was also present in the citrus pulp. Washing reduced spirotetramat, B-enol, B-glu and B-keto by 83%, 56%, 41% and 16%, respectively, and pre-treatment of the peel removed between 42% and 68% of the residues. Four compounds were all below the limit of detection after the mixing step. In the final product, only B-keto was detected at the concentration of 0.010 mg kg(-1). After the whole process, the processing factors for spirotetramat, B-enol, B-glu and B-keto were < 0.041, < 0.125, < 0.294 and 0.313, respectively, which indicated that home processing can significantly reduce residues of spirotetramat and its metabolites in citrus marmalade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.