Semiconductor-metal-organic framework (MOF) hybrid photocatalysts have attracted increasing attention because of their enhanced photocatalytic activity. However, the effect of the interface reaction between semiconductor and MOFs is rarely studied. In this work, we studied the synthesis and photocatalytic activity of zeolitic imidazolate framework-8 (ZIF-8) decorated electrostatic spinning TiO2 nanofibers (TiO2 ESNFs). TiO2/ZIF-8 hybrid photocatalysts were prepared via a facile sonochemical route. It was crucial that the ZIF-8 was assembled homogeneously on the surface of TiO2 ESNFs and formed a N-Ti-O bond under sonochemical treatment, which may result in reducing recombination of the electron-hole pairs. The chemically bonded TiO2/ZIF-8 nanocomposites displayed excellent performance of thermal stability, controllable crystallinity, and great enhancement of photocatalytic activity in Rhodamine B (Rh B) photodegradation. Furthermore, the UV-vis light adsorption spectra of TiO2/ZIF-8 nanocomposites showed that the ZIF-8 photosensitizer extended the spectral response of TiO2 to the visible region. The new strategy reported here can enrich the method for designing new semiconductor-MOF hybrid photocatalysts.
Cancer nanotherapeutics are rapidly progressing and being implemented to solve several limitations of conventional drug delivery systems. In this paper, we report a novel strategy of preparing methotrexate (MTX) nanoparticles based on chitosan (CS) and methoxypoly(ethylene glycol) (mPEG) used as nanocarriers to enhance their targeting and prolong blood circulation. MTX and mPEG-conjugated CS nanoparticles (NPs) were prepared and evaluated for their targeting efficiency and toxicity in vitro and in vivo. The MTX-mPEG-CS NP size determined by dynamic light scattering was 213 ± 2.0 nm with a narrow particle size distribution, and its loading content (LC %) and encapsulation efficiency (EE) were 44.19 ± 0.64% and 87.65 ± 0.79%, respectively. In vitro release behavior of MTX was investigated. In vivo optical imaging in mice proved that MTX was released from particles subsequently and targeted to tumor tissue, showing significantly prolonged retention and specific selectivity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay obviously indicated that the higher inhibition efficiency of MTX-mPEG-CS NPs meant that much more MTX was transferred into the tumor cells. A significant right-shift in the flow cytometry (FCM) assay demonstrated that MTX-loaded nanoparticles were far superior to a pure drug in the inhibition of growth and proliferation of Hela cells. These results suggest that MTX-mPEG-CS NPs could be a promising targeting anticancer chemotherapeutic agent, especially for cervical carcinoma.
Herein, Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co3O4/NPC composites. When applied as catalysts for the oxygen evolution reaction (OER), the M-Co3O4/NPC composites derived from the flower-like ZIF-67 showed superior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co3O4/NPC composite displayed a small over-potential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 mV dec−1, and a desirable stability. (94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co3O4/NPC composite in the OER was attributed to its favorable structure.
Electronic supplementary materialThe online version of this article (10.1007/s40820-017-0170-4) contains supplementary material, which is available to authorized users.
Silicon
nanoparticles (SiNPs) with a median size of 51 nm are prepared
by the sand mill from waste silicon, and then carbon-interweaved SiNPs/graphite
anode materials are designed. Because of the size of SiNPs is restricted
below a critical fracture size of 150 nm as well as the rational decoration
of carbon and graphite, fracture of SiNPs, and volume deformation
of active materials are highly alleviated, leading to low impedance,
enhanced electrochemical reaction kinetics, and good electronic connection
between active materials and current collector. Furthermore, delithiation
reversibility of the formed crystalline Li15Si4 alloy is enhanced. As a result, the anode with 10.5 wt % content
of Si (including SiO
x
) delivers a properly
high initial reversible capacity of 505 mA h g–1, high cycling stability with capacity retentions of 86.3%, and 91.5%
at 0.1 and 1 A g–1 after 500 cycles, respectively.
After cycling at a series of higher current densities, the reversible
capacity recovers to the original level completely (100% recovery)
when the current density is set back to the original value, exhibiting
outstanding rate performance. The results indicate that the silicon–carbon
anode can achieve high cycling performances with enhanced delithiation
reversibility of the formed crystalline Li15Si4 alloy by restricting size of SiNPs and decoration of carbon materials,
which are discussed systematically. The SiNPs are recycled from waste
Si, and synthetic strategy of anode materials is very facile, cost-effective,
and nontoxic, which has potential for industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.