In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency.
Immune checkpoint blockade therapy has been successful in treating some types of cancers but has not shown clinical benefits for treating leukemia
1
. This result suggests that leukemia exploits unique escape mechanisms. Certain immune inhibitory receptors that are expressed by normal immune cells are also present on leukemia cells. It remains unknown whether these receptors can initiate immune-related primary signaling in tumor cells. Here we show that LILRB4, an ITIM-containing receptor and a monocytic leukemia marker, supports tumor cell infiltration into tissues and suppresses T cell activity via ApoE/LILRB4/SHP-2/uPAR/Arginase-1 signaling axis in acute myeloid leukemia (AML) cells. Blocking LILRB4 signaling using knockout and antagonistic antibody approaches impeded AML development. Thus, LILRB4 orchestrates tumor invasion pathways in monocytic leukemia cells by creating an immune-suppressive microenvironment. LILRB4 represents a compelling target for treatment of monocytic AML.
Nickel nanoparticles were prepared from the thermal decomposition of nickel(II)
acetylacetonate in alkylamines and characterized by powder x-ray diffraction, transmission
electron microscopy and magnetic measurement. The reaction temperature, heating rate
and solvent type play an important role in the control over the crystalline phase.
Depending on the reaction conditions, face-centered cubic (fcc) or hexagonal close-packed
(hcp) nickel nanoparticles can be obtained. Monodisperse nickel nanoparticles were also
obtained by introducing surfactants. The results of magnetic characterization showed that
the magnetic properties of the hcp nickel nanoparticles are quite different from those of the
fcc nickel nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.