Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.
In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency.
Cleanup of oil spills is a worldwide challenge to prevent serious environmental pollution. A new kind of poly(dimethylsiloxane) (PDMS) oil absorbent with high absorption capacity and excellent reusability was prepared and used for oil/water separation. The preparation process of PDMS oil absorbents involves direct curing of a PDMS prepolymer in a p-xylene solution in the presence of commercial sugar particles, which is simple and economic. PDMS oil absorbents have interconnected pores and a swellable skeleton, combining the advantages of porous materials and gels. Absorption capacities of PDMS oil absorbents are 4-34 g/g for various oils and organic solvents, which are 3 times that reported previously. Owing to their hydrophobicity and oleophilicity, the as-obtained PDMS oil absorbents can selectively collect oils or organic solvents from water. The absorption process can be finished within tens of seconds. Furthermore, the absorbed oils or organic solvents can be recovered by compressing the oil absorbents, and after 20 absorbing/recovering cycles, PDMS oil absorbents show little loss of their absorption capacities and own weights.
Lung adenocarcinomas (LUAD) that radiologically display as subsolid nodules (SSNs) exhibit more indolent biological behavior than solid LUAD. The transcriptomic features and tumor microenvironment (TME) of SSN remain poorly understood. Here, we performed single-cell RNA sequencing analyses of 16 SSN samples, 6 adjacent normal lung tissues (nLung), and 9 primary LUAD with lymph node metastasis (mLUAD). Approximately 0.6 billion unique transcripts were obtained from 118,293 cells. We found that cytotoxic natural killer/T cells were dominant in the TME of SSN, and malignant cells in SSN undergo a strong metabolic reprogram and immune stress. In SSN, the subtype composition of endothelial cells was similar to that in mLUAD, while the subtype distribution of fibroblasts was more like that in nLung. Our study provides single-cell transcriptomic profiling of SSN and their TME. This resource provides deeper insight into the indolent nature of SSN and will be helpful in advancing lung cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.