As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.
Nucleoporins (Nups) are known to be functional in nucleo‐cytoplasmic transport, but the roles of nucleoporins in nonproliferating cells, such as cardiac myocytes, are still poorly understood. In this study, we report that Nup107 regulates cardiac bioelectricity by controlling the nucleo‐cytoplasmic trafficking of Scn5a mRNA. Overexpression of Nup107 induced the protein expression of Scn5a rather than that of other ion channels, with no effects of their mRNA levels. The analysis for the protein production demonstrated Nup107‐facilitated transport of Scn5a mRNA. Using RIP‐PCR and luciferase assay, we found that the 5′‐UTR of Scn5a mRNA was not involved in the interaction, whereas the spatial interaction between Nup107 protein and Scn5a mRNA was formed when Scn5a mRNA passing through the nuclear pore. Functionally, Nup107 overexpression in neonatal rat ventricle myocytes significantly increased the currents of Scn5a‐encoded INa channel. Moreover, the close correlation between Nup107 and Nav1.5 protein expression was observed in cardiomycytes and heart tissues subjected to hypoxia and ischaemic insults, suggesting a fast regulation of Nup107 on Nav1.5 channel in cardiac myocytes in a posttranscriptional manner. These findings may provide insights into the emergent control of cardiac electrophysiology through Nup‐mediated modulation of ion channels.
TLRs have been proven to be essential mediators for the early innate immune response. Overactivation of TLR‐mediated immune signaling promotes deterioration of cardiovascular diseases; however, the role of TLRs in the heart under physiologic conditions remains neglected. Here, we show that Tlr3 deficiency induced the endoplasmic reticulum (ER) retention of Kv4.2/4.3 proteins and consequent degradation via the ubiquitin‐proteasome pathway. Knockout of Tlr3 resulted in a prolonged QT interval (the space between the start of the Q wave and the end of the T wave) in mice with no significant signs of inflammation and tissue abnormality in cardiac muscles. Prolongation of action potential duration resulted from the depression of transient outward potassium channel (Ito) currents in Tlr3‐deficient ventricular myocytes mirrored the change in QT interval. Mechanistically, we found that Tlr3 was exclusively localized in the ER of cardiomyocytes where it interacted with Kv4.2/4.3 subunits of Ito channel. Thus, our data indicated that TLR3 directly regulates Ito channel protein dynamics to maintain cardiac repolarization, which may implicate a new molecular surveillance system for cardiac electrophysiological homeostasis.—Gao, X., Gao, S., Guan, Y., Huang, L., Huang, J., Lin, L., Liu, Y., Zhao, H., Huang, B., Yuan, T., Liu, Y., Liang, D., Zhang, Y., Ma, X., Li, L., Li, J., Zhou, D., Shi, D., Xu, L., Chen, Y.‐H. Toll‐like receptor 3 controls QT interval on the electrocardiogram by targeting the degradation of Kv4.2/4.3 channels in the endoplasmic reticulum. FASEB J. 33, 6197–6208 (2019). http://www.fasebj.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.