Additive manufacturing at the micro‐ and nanoscale has seen a recent upsurge to suit an increasing demand for more elaborate structures. However, the integration of multiple distinct materials at small scales remains challenging. To this end, capillarity‐assisted particle assembly (CAPA) and two‐photon polymerization direct laser writing (2PP‐DLW) are combined to realize a new class of multimaterial microstructures. 2PP‐DLW and CAPA both are used to fabricate 3D templates to guide the CAPA of soft‐ and hard colloids, and to link well‐defined arrangements of functional microparticle arrays produced by CAPA, a process that is termed “printing on particles.” The printing process uses automated particle recognition algorithms to connect colloids into 1D, 2D, and 3D tailored structures, via rigid, soft, or responsive polymer links. Once printed and developed, the structures can be easily re‐dispersed in water. Particle clusters and lattices of varying symmetry and composition are reported, together with thermoresponsive microactuators, and magnetically driven “micromachines”, which can efficiently move, capture, and release DNA‐coated particles in solution. The flexibility of this method allows the combination of a wide range of functional materials into complex structures, which will boost the realization of new systems and devices for numerous fields, including microrobotics, micromanipulation, and metamaterials.
Additive manufacturing at the micro-and nanoscale has seen a recent upsurge to suit the increasing demand for more elaborate structures. However, the integration and precise placement of multiple distinct materials at small scales remain a challenge. To this end, we combine here the directed capillary assembly of colloidal particles and two-photon direct laser writing (DLW) to realize a new class of multi-material microstructures. We use DLW both to fabricate 3D micro-templates to guide the capillary assembly of soft-and hard colloids, and to link well-defined arrangements of polystyrene or silica particles produced with capillary assembly, a process we term "printing on particles". The printing process is based on automated particle recognition algorithms and enables the user to connect colloids into one-and two-dimensional tailored structures, including particle clusters and lattices of varying symmetry and composition, using commercial photo-resists (IP-L or IP-PDMS). Once printed and developed, the structures can be easily harvested and re-dispersed in water. The flexibility of our method allows the combination of a wide range of materials into complex structures, which we envisage will boost the realization of new systems for a broad range of fields, including microrobotics, micromanipulation and metamaterials.
Artificial microswimmers, i.e. colloidal scale objects capable of self-propulsion, have garnered significant attention due to their central role as models for out of equilibrium systems. Moreover, their potential applications in diverse fields such as biomedicine, environmental remediation, and materials science have long been hypothesized, often in conjunction with their ability to deliver cargoes to overcome mass transport limitations. A very efficient way to load molecular cargoes is to disperse them in a liquid, however, fabricating microswimmers with multiple liquid compartments remains a significant challenge. To address this challenge, we present a modular fabrication platform that combines microfluidic synthesis and sequential capillarity-assisted particle assembly (sCAPA) for microswimmers with various liquid compartments. We demonstrate the synthesis of monodisperse, small polymer-based microcapsules (Ø = 3 – 6 µm) with different liquid cargoes using a flow-focusing microfluidic device. By employing the sCAPA technique, we assemble multiple microcapsules into microswimmers with high precision, resulting in versatile microswimmers with multiple liquid compartments and programmable functionalities. Our work provides a flexible approach for the fabrication of modular microswimmers, which could potentially actively transport cargoes and release them on demand in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.