Phosphorylation of the C1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-C1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana. However, how phosphorylation of TYLCCNB-C1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-C1 that are phosphorylated by SnRK1. The effects of TYLCCNB-C1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-C1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-C1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-C1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-C1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, C1 (TYLCCNB-C1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-C1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N. benthamiana ASYMMETRIC LEAVES 1. To our knowledge, this is the first report establishing an inhibitory effect of phosphorylation of TYLCCNB-C1 on its pathogenic functions as both a VSR and a symptom determinant and to provide a mechanistic explanation of how SNF1-related protein kinase 1 acts as a host defense factor. These findings expand the scope of phosphorylation-mediated defense mechanisms and contribute to further understanding of plant defense mechanisms against geminiviruses.KEYWORDS TYLCCNB-C1, Nicotiana benthamiana, SnRK1, geminivirus, host defense factor, posttranscriptional gene silencing, protein phosphorylation, transcriptional gene silencing
Cherry (Prunus avium) has become an important economical fruit in China. In October 2020, a leaf spot disease was found on cherry in the orchard of Taizhou Academy of Agriculture Sciences, Zhejiang, China. The symptoms appeared as small, water-soaked spots on the leaves, which later became larger, dark brown, and necrotic lesions of 1 cm to 3 cm in width, 4 cm to 8 cm in length. Disease incidences of approximately 60% of the leaves were observed by sampling five locations. To isolate the causing agent, small fragments from five target symptomatic leaves were surface-sterilized with 1.0% sodium hypochlorite solution for 1 min and then rinsed three times with sterilized water. Afterwards the leaf fragments were air-dried, plated onto potato dextrose agar (PDA) medium, and incubated at 25 ℃ in the dark for 2 days. The pure cultures were obtained by transferring hyphal plug of 2 mm in diameter onto PDA, which followed single spore isolation. The colony morphology showed light to dark gray, cottony mycelium, with the underside of the culture became brownish after 7 days. Conidia (n = 28) were hyaline, smooth-walled, cylindrical, aseptate, broadly rounded ends, and average size around 3.84 × 12.82 μm (2.99 to 4.87 × 10.27 to 15.68 μm). Appressoria (n = 27) were mostly brown, ovoid and slightly irregular in shape, and average size around 8.04 × 9.68 μm (6.29 to 9.67 × 9.32 to 12.06 μm). Perithecia average size is 106.25 μm, textura angularis, thick-walled. Asci 26.35–49.18 × 5.00-12.03 μm (average size 37.44 × 7.80 μm, n = 17), unitunicate, thin-walled, clavate or cymbiform. Ascospores 13.69–20.93 × 3.86-6.69 μm (average size 16.00 × 5.42 μm, n = 30), one-celled, hyaline, one or two large guttulate at the centre, slightly rounded ends. The morphological characteristics matched well with previous descriptions of Colletotrichum species of C. gloeosporioides species complex, including C. fructicola (Prihastuti et al. 2009; Fu et al. 2019). The identity of two representative isolates (cf2-3 and cf4-4) from different leaves was confirmed by means of multi-locus gene sequencing. To this end, genomic DNA was extracted by the Plant Direct PCR kit (Vazyme Biotech Co., Ltd, China). Molecular identification was conducted by sequencing the internal transcribed spacer (ITS) rDNA region, partial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, partial actin (ACT) gene, partial beta-tubulin 2 gene (TUB2), and partial chitin synthase gene (CHS). The obtained sequences have been deposited in GenBank under accession numbers MW581851 and MW581852 (ITS), MW590586 and MW590587 (GAPDH), MW616561 and MW616562 (ACT), MW729380 and MW729381 (TUB2), MW729378 and MW729379 (CHS). The results of Basic Local Alignment Search Tool (BLAST) analysis revealed that the ITS, GAPDH, ACT, TUB2 and CHS sequences of both isolates matched with 100% identity to Colletotrichum fructicola culture collection sequences in GenBank database (JX010165, JX009998, JX009491, JX010405, and JX009866 respectively). These morphological characteristics and molecular analyses allowed the identification of the pathogen as C. fructicola. Koch’s postulates were performed with healthy detached cherry leaves of cultivar namely ‘HongMi’ from Taizhou Academy of Agriculture Sciences. Surface-sterilized leaves were inoculated with five-day-old cultures of C. fructicola mycelial discs of 2 mm in diameter after being wounded with a needle or non-wounded. Control leaves were inoculated with discs of same size PDA agar. Treated leaves were incubated at 25 ℃ in the dark at high relative humidity. Anthracnose symptoms appeared within 3 days both on non-wounded and wounded inoculation approaches. Mock-inoculated controls remained asymptomatic. Biological repetitions were carried out three times. The fungus was reisolated from infected leaves and confirmed as C. fructicola following the methods described above. Until recently, it has been found that C. fructicola can infect tea, apple, pear, Pouteria campechiana in China (Fu et al. 2014; Li et al. 2013; Shi et al. 2018; Yang et al. 2020). To the best of our knowledge, this is the first report of C. fructicola on cherry in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.