A selective and sensitive electrochemical sensor was developed for simultaneous detection of phytohormones indole-3-acetic acid (IAA) and salicylic acid (SA). The sensing interface was fabricated on a porous, three-dimensional networked graphene hydrogel (GH) modified glassy carbon electrode (GCE). The electrocatalytic behavior of IAA and SA on the surface of the modified electrode (GH/GCE) was investigated by cyclic voltammetry and linear sweep voltammetry. Results show that the oxidation reactions of IAA and SA occur at different potentials, which enable their simultaneous detection at the sensing interface. Under optimal conditions, the GH/GCE exhibited good selectivity and stability and its response, unaffected by various interferents, was linear in the range of 4 to 200 µM of IAA and SA. The limit of detection (S/N = 3) achieved were 1.42 µM for IAA and 2.80 µM for SA. The sensor performance was validated by measuring for IAA and SA in real vegetable samples with satisfactory results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.