Background Autopolyploids, especially artificial lines, provide model systems for understanding the mechanisms of gene dosage effects on trait variation owing to their relatively uniform genetic background. Here, a protocol for in vitro octaploid induction of Populus hopeiensis from leaf blades with colchicine treatment was established through investigation of the effects of different pre-culture durations, colchicine concentrations, and exposure times. Results We found that pre-culture duration, colchicine concentration, and exposure time had significant effects on the survival rate, shoot regeneration rate, and octaploid induction rate of P. hopeiensis leaf blades. The highest octaploid induction rate (8.61%) was observed when leaf blades pre-cultured for 9 days were treated for 4 days with 100 μM colchicine. The ploidy level of all regenerated plantlets was analyzed by flow cytometry and further confirmed by chromosome counting. A total of 14 octaploids were obtained. The stomatal length, width, and density of leaf blades significantly differed between tetraploid and octaploid plants. Compared with diploid and tetraploid plants, octaploids had a slower growth rate, smaller leaf blade size, and shorter internodes. Conclusions We established an effective protocol for inducing octaploids in vitro from autotetraploid P. hopeiensis leaf blades by colchicine treatment.
The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38 °C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat-shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells (PMCs) revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from SDR-type 2n pollen and 4 triploids derived from FDR-type 2n pollen were verified using SSR molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the MI to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat-shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.
Background Primary trisomy is a powerful genetic tool in plants. However, trisomy has not been detected in Populus as a model system for tree and woody perennial plant biology. Results In the present study, a backcross between Populus alba × Populus glandulosa ‘YXY 7#’ (2n = 2x = 38) and the triploid hybrid ‘Beilinxiongzhu 1#’ (2n = 3x = 57) based on the observation of microsporogenesis and an evaluation of the variations in pollen was conducted to create primary trisomy. Many abnormalities, such as premature migration of chromosomes, lagging of chromosomes, chromosome bridges, asymmetric separation, micronuclei, and premature cytokinesis, have been detected during meiosis of the triploid hybrid clone ‘Beilinxiongzhu 1#’. However, these abnormal behaviors did not result in completely aborted pollen. The pollen diameter of the triploid hybrid clone ‘Beilinxiongzhu 1#’ is bimodally distributed, which was similar to the chromosomal number of the backcross progeny. A total of 393 progeny were generated. We provide a protocol for determining the number of chromosomes in aneuploid progeny, and 19 distinct simple sequence repeat (SSR) primer pairs covering the entire Populus genome were developed. Primary trisomy 11 and trisomy 17 were detected in the 2x × 3 x hybrid using the SSR molecular markers and counting of somatic chromosomes. Conclusions Nineteen distinct SSR primer pairs for determining chromosomal number in aneuploid individuals were developed, and two Populus trisomies were detected from 2x × 3 x hybrids by SSR markers and somatic chromosome counting. Our findings provide a powerful genetic tool to reveal the function of genes in Populus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.