The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.
The packaging of the eukaryotic genome in chromatin presents barriers that restrict the access of enzymes that process DNA. To overcome these barriers, cells possess a number of multi-protein, ATP-dependent chromatin remodelling complexes, each containing an ATPase subunit from the SNF2/SWI2 superfamily. Chromatin remodelling complexes function by increasing nucleosome mobility and are clearly implicated in transcription. Here we have analysed SNF2/SWI2- and ISWI-related proteins to identify remodelling complexes that potentially assist other DNA transactions. We purified a complex from Saccharomyces cerevisiae that contains the Ino80 ATPase. The INO80 complex contains about 12 polypeptides including two proteins related to the bacterial RuvB DNA helicase, which catalyses branch migration of Holliday junctions. The purified complex remodels chromatin, facilitates transcription in vitro and displays 3' to 5' DNA helicase activity. Mutants of ino80 show hypersensitivity to agents that cause DNA damage, in addition to defects in transcription. These results indicate that chromatin remodelling driven by the Ino80 ATPase may be connected to transcription as well as DNA damage repair.
While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.