New therapeutic agents for Candida albicans vaginitis are urgently awaiting to be developed because of the increasing antibiotic resistance of C. albicans. Antimicrobial peptides (AMPs) are one of the most promising choices for next-generation antibiotics. In this study, novel peptides were designed based on snake venom antimicrobial peptide cathelicidin-BF to promote anti-C. albicans activity and decrease side-effects. The designing strategies include substitutions of charged or hydrophobic amino acid residues for noncharged polar residues to promote antimicrobial activity and insertion of a hydrophobic residue in the hydrophilic side of the helix structure to reduce hemolysis. A designed tryptophan and lysine/arginine-rich cationic peptide 4 (ZY13) (VKRWKKWRWKWKKWV-NH2) exhibited excellent antimicrobial activity against either common strain or clinical isolates of antibiotic-resistant C. albicans with little hemolysis. Peptide 4 showed significant therapeutic effects on vaginitis in mice induced by the infection of clinical antibiotic-resistant C. albicans. The approaches herein might be useful for designing of AMPs.
BackgroundAspartate β-hydroxylase (ASPH) is silent in normal adult tissues only to re-emerge during oncogenesis where its function is required for generation and maintenance of malignant phenotypes. Exosomes enable prooncogenic secretome delivering and trafficking for long-distance cell-to-cell communication. This study aims to explore molecular mechanisms underlying how ASPH network regulates designated exosomes to program development and progression of breast cancer.MethodsStable cell lines overexpressing or knocking-out of ASPH were established using lentivirus transfection or CRISPR-CAS9 systems. Western blot, MTT, immunofluorescence, luciferase reporter, co-immunoprecipitation, 2D/3-D invasion, tube formation, mammosphere formation, immunohistochemistry and newly developed in vitro metastasis were applied.ResultsThrough physical interactions with Notch receptors, ligands (JAGs) and regulators (ADAM10/17), ASPH activates Notch cascade to provide raw materials (especially MMPs/ADAMs) for synthesis/release of pro-metastatic exosomes. Exosomes orchestrate EMT, 2-D/3-D invasion, stemness, angiogenesis, and premetastatic niche formation. Small molecule inhibitors (SMIs) of ASPH’s β-hydroxylase specifically/efficiently abrogated in vitro metastasis, which mimics basement membrane invasion at primary site, intravasation/extravasation (transendothelial migration), and colonization/outgrowth at distant sites. Multiple organ-metastases in orthotopic and tail vein injection murine models were substantially blocked by a specific SMI. ASPH is silenced in normal adult breast, upregulated from in situ malignancies to highly expressed in invasive/advanced ductal carcinoma. Moderate-high expression of ASPH confers more aggressive molecular subtypes (TNBC or Her2 amplified), early recurrence/progression and devastating outcome (reduced overall/disease-free survival) of breast cancer. Expression profiling of Notch signaling components positively correlates with ASPH expression in breast cancer patients, confirming that ASPH-Notch axis acts functionally in breast tumorigenesis.ConclusionsASPH-Notch axis guides particularly selective exosomes to potentiate multifaceted metastasis. ASPH’s pro-oncogenic/pro-metastatic properties are essential for breast cancer development/progression, revealing a potential target for therapy.
Inhibition of NF-κB activation is one of the mechanisms that DHA inhibits angiogenesis in human pancreatic cancer. We also suggest that DHA could be developed as a novel agent against pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.