Almost
s
s
-mappings and almost compact mappings have been introduced and studied. In this article, we continue to research some questions related to the almost s-images (resp., almost compact images) of metric spaces. The following results are obtained. (1) A space
X
X
is a quotient and almost compact image of a metric space if and only if
X
X
is a sequential space having a
c
s
∗
c{s}^{\ast }
-network which is point-regular at nonisolated points, which gives an affirmative answer to Question 4.9 in the article “S. Lin, X. W. Ling, and Y. Ge, Point-regular covers and sequence-covering compact mappings, Topology Appl. 271 (2020), 106987.” (2) There exists a bi-quotient and almost compact image of a metric space satisfying no base, which is point-countable at nonisolated points, which gives negative answers to Question 3.1 in the article “X. W. Ling and S. Lin, On open almost s-images of metric spaces, Adv. Math. (China) 48 (2019), no. 4, 489–496” and Question 3.7 in the article “X. W. Ling, S. Lin, and W. He, Point-countable covers and sequence-covering s-mappings at subsets, Topology Appl. 290 (2021), 107572.” (3) Some characterizations of countably bi-quotient and almost
s
s
-images (resp., pseudo-open and almost compact images) of metric spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.