The light spectrum varies with the altitude of the sun and shows different light colors in clear water. In this study, we aimed to investigate the response of juvenile steelhead trout Oncorhynchus mykiss (34.67 ± 2.69 g initial weight) under different light color conditions. The effects of different blue and red light combinations on plasma biochemical parameters, digestive enzyme activity, and RNA/DNA ratio were assessed in trout over 16 weeks. Six treatments were randomly assigned to 24 tanks with four replicates per treatment: a constant light intensity of 150 lx: 12 h white light then 12 h dark (12W); 12 h blue light then 12 h dark (12B); 12 h red light then 12 h dark (12R); 1.5 h blue light, 9 h red light, 1.5 h blue light, then 12 h dark (3B9R); 3 h blue light, 6 h red light, 3 h blue light, then 12 h dark (6B6R); and 12 h of both blue and red light then 12 h dark (T12BR). Fish exposed to the 3B9R light environment showed significantly increased plasma levels of total protein (TP), enhanced activities of midgut lipase, trypsin, and gastric lipase; and increased RNA content in the liver and muscle tissue to promote protein synthesis efficiency, thereby improving digestive and anabolic performance compared to fish in the other treatments. This indicates that steelhead trout have adapted well to such variable light conditions during long-term evolution. In contrast, trout exposed to the 6B6R light environment showed significant reductions in plasma glucose, TP, and triglyceride levels, decreased activity of gastrointestinal digestive enzymes, and reduced protein synthesis capacity in the muscle and liver, resulting in weakened digestive and anabolic performance. Furthermore, despite the high RNA content and RNA/DNA ratio in fish exposed to a 12R light environment, relatively high plasma cholesterol and triglycerides levels were observed, which might indicate oxidative stress. Therefore, this light is not considered suitable for long-term cultivation. In conclusion, the 3B9R treatment was the optimal light condition tested and can be used to improve the digestive and anabolic performance of steelhead trout.
In order to meet the demand of salmon market, Chinese scientists and entrepreneurs are working on salmon mariculture far offshore in the Yellow Sea, China. Rainbow, steelhead trout and Atlantic salmon were selected as the main culture species. The aims of the present study were as follows: (a) investigate the effect of the salinity acclimation method on the growth, osmoregulation and energy budget in two forms of Oncorhynchus mykiss, rainbow and steelhead trout and (b) explore the optimal size of steelhead trout for the seawater entry. In trial I, rainbow (mean = 99.44 g) and steelhead trout (mean = 99.01 g) were reared for 40 days after undergoing salinity acclimation at three rates: an abrupt increase in salinity from 0 to 30 g/L (T30); an abrupt increase in salinity to 14 g/L, followed by a daily increase of 2 g/L (T2) or 6 g/L (T6) until reaching 30 g/L; and no salinity exposure (control treatment) (T0). In trial II, steelhead trout with body weights of approximately 100 and 400 g were cultured for 60 days with two treatments, T0 and T2, and the specific growth rate (SGR) was calculated every 10 days. In trial I, in both kinds of fish, the optimal growth performance, survival rate, osmoregulation and energy budget were observed in the T0 treatment, followed by the T2 treatment. These results indicate that O. mykiss with a body weight of approximately 100 g can adapt to sea water with a gradual transition (T2), but they are still not suitable for the seawater entry because of low growth. Based on the recorded SGRs in trial II, our formulated regression formula revealed that approximately 200 g is the optimal size of steelhead trout for the transition to sea water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.