Leaf age is an important trait in the process of maize (Zea mays L.) growth. It is significant to estimate the seed activity and yield of maize by counting leaves. Detection and counting of the maize leaves in the field are very difficult due to the complexity of the field scenes and the cross-covering of adjacent seedling leaves. A method was proposed in this study for detecting and counting maize leaves based on deep learning with RGB images collected by unmanned aerial vehicles (UAVs). The Mask R-CNN was used to separate the complete maize seedlings from the complex background to reduce the impact of weeds on leaf counting. We proposed a new loss function SmoothLR for Mask R-CNN to improve the segmentation performance of the model. Then, YOLOv5 was used to detect and count the individual leaves of maize seedlings after segmentation. The 1005 field seedlings images were randomly divided into the training, validation, and test set with the ratio of 7:2:1. The results showed that the segmentation performance of Mask R-CNN with Resnet50 and SmoothLR was better than that with LI Loss. The average precision of the bounding box (Bbox) and mask (Mask) was 96.9% and 95.2%, respectively. The inference time of single image detection and segmentation was 0.05 s and 0.07 s, respectively. YOLOv5 performed better in leaf detection compared with Faster R-CNN and SSD. YOLOv5x with the largest parameter had the best detection performance. The detection precision of fully unfolded leaves and newly appeared leaves was 92.0% and 68.8%, and the recall rates were 84.4% and 50.0%, respectively. The average precision (AP) was 89.6% and 54.0%, respectively. The rates of counting accuracy for newly appeared leaves and fully unfolded leaves were 75.3% and 72.9%, respectively. The experimental results showed the possibility of current research on exploring leaf counting for field-grown crops based on UAV images.
The number of leaves in maize seedlings is an essential indicator of their growth rate and status. However, manual counting of seedlings is inefficient and limits the scope of the investigation. Deep learning has shown potential for quickly identifying seedlings, but it requires larger, labeled datasets. To address these challenges, we proposed a method for counting maize leaves from seedlings in fields using a combination of semi-supervised learning, deep learning, and UAV digital imagery. Our approach leveraged semi-supervised learning and novel methods for detecting and counting maize seedling leaves accurately and efficiently. Specifically, we used a small amount of labeled data to train the SOLOv2 model based on the semi-supervised learning framework Noisy Student. This model can segment complete maize seedlings from UAV digital imagery and generate foreground images of maize seedlings with background removal. We then trained the YOLOv5x model based on Noisy Student with a small amount of labeled data to detect and count maize leaves. We divided our dataset of 1005 images into 904 training images and 101 testing images, and randomly divided the 904 training images into four sets of labeled and unlabeled data with proportions of 4:6, 3:7, 2:8, and 1:9, respectively. The results indicated that the SOLOv2 Resnet101 outperformed the SOLOv2 Resnet50 in terms of segmentation performance. Moreover, when the labeled proportion was 30%, the student model SOLOv2 achieved a similar segmentation performance to the fully supervised model with a mean average precision (mAP) of 93.6%. When the labeled proportion was 40%, the student model YOLOv5x demonstrated comparable leaf counting performance to the fully supervised model. The model achieved an average precision of 89.6% and 57.4% for fully unfolded leaves and newly appearing leaves, respectively, with counting accuracy rates of 69.4% and 72.9%. These results demonstrated that our proposed method based on semi-supervised learning and UAV imagery can advance research on crop leaf counting in fields and reduce the workload of data annotation.
Photonic crystal structures attract much interest, and considerable efforts have been devoted toward hydrogel-based photonic crystal responsive materials. However, the mechanical strength of such composite films is still not desirable. Here, we present a light diffracting hydrogel film with enhanced mechanical property by embedding a self-assembled polystyrene array in a binary hydrogel via a facile photopolymerization technique, which enables the convenient fabrication and shaping of robust photonic sensing films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.