The unmanned aerial vehicle (UAV) network has gained vigorous evolution in recent decades by virtue of its advanced nature, and UAV-based localization techniques have been extensively applied in a variety of fields. In most applications, the data captured by a UAV are only useful when associated with its geographic position. Efficient and low-cost positioning is of great significance for the development of UAV-aided technology. In this paper, we investigate an effective three-dimensional (3D) localization approach for multiple UAVs and propose a flipping ambiguity avoidance optimization algorithm. Specifically, beacon UAVs take charge of gaining global coordinates and collecting distance measurements from GPS-denied UAVs. We adopt a semidefinite programming (SDP)-based approach to estimate the global position of the target UAVs. Furthermore, when high noise interference causes missing distance pairs and measurement errors, an improved gray wolf optimization (I-GWO) algorithm is utilized to improve the positioning accuracy. Simulation results show that the proposed approach is superior to a number of alternative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.