Introduction: This study aims to explore the effects of microRNA-1286 (miR-1286) on the development of non-small cell lung cancer (NSCLC) via the aerobic glycolysis pathway by targeting pyruvate kinase muscle isozyme M2 (PKM2). Material and methods: The mRNA levels of miR-1286 in NSCLC tissues and mouse tumor tissues were detected by q-PCR. MiR-1286 was knocked down and overexpressed separately in A549 cells. The effect of miR-1286 on cell proliferation was determined by CCK8 assay. Western blotting was used to measure the expression of PKM2 protein. Lactate production assay was used to detect the aerobic glycolysis in A549 cells. The effect of miR-1286 in vivo was determined by xenograft assay. Results: The mRNA level of miR-1286 decreased in NSCLC tissues compared with paired, tumor adjacent normal tissues. In addition, miR-1286 inhibited A549 cell proliferation in vitro. Moreover, knockdown of miR-1286 increased PKM2 expression and lactate production. Thus, miR-1286 expression negatively correlated with PKM2 in A549 cells. At the same time, in vivo experiments also showed that miR-1286 suppressed the growth of A549 cells and PKM2 was the target gene of miR-1286. Conclusions: These data show that miR-1286 inhibits lung cancer proliferation via aerobic glycolysis by targeting PKM2, which suggests that the functions of miR-1286 in NSCLC may play a key role in tumor progression and that miR-1286 can be a promising predictive biomarker and potential therapeutic target for NSCLC.
This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs. normal control tissues were located in key steps in TCA cycle and pyruvate metabolism. A total of 23 upregulated genes localized in TCA cycle and pyruvate metabolism were identified as super-enhancer-controlled genes. Transcription factor analysis of these 23 super-enhancer-controlled genes related to glucose metabolism was performed, and 20 transcription factors were obtained, of which KLF12, ZNF281 and RELA had a significant prognostic impact. Regulatory network of KLF12, ZNF281 and RELA controlled the expression of these four prognostic target genes (LDHA, ACLY, ME2 and IDH2). In vitro validation showed that silencing of KLF12, ZNF281 and RELA suppressed proliferation, glucose uptake, lactate production and ATP level, but increased ADP/ATP ratio in PDTC cells. In conclusion, KLF12, ZNF281 and RELA were identified as the key transcription factors that regulate super-enhancer-controlled genes related to glucose metabolism in PDTC. Our findings contribute to a deeper understanding of the regulatory mechanisms associated with glucose metabolism in PDTC, and advance the theoretical development of PDTC-targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.