BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication.MethodsThe interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively.ResultsThe interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells.ConclusionOur findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-017-0794-5) contains supplementary material, which is available to authorized users.
BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS, has two distinct and highly diverse genotypes (genotype 1 and genotype 2) in the field. Accurate diagnosis and differentiation of the two genotypes of PRRSV are critical to the effective prevention and control of PRRS. The non-structural protein 10 (Nsp10) plays a vital role in viral replication and is one of the most conserved proteins of PRRSV, thus constituting a good candidate for PRRSV diagnosis.ResultsIn this study, we generated a monoclonal antibody (mAb) 4D9 against Nsp10 by immunizing BALB/c mice with purified recombinant Nsp10 expressed by an Escherichia coli system. Through fine epitope mapping of mAb 4D9 using a panel of eukaryotic expressed polypeptides with GFP-tags, we identified the motif 286AIQPDYRDKL295 as the minimal unit of the linear B-cell epitope recognized by mAb 4D9. Protein sequence alignment indicated that 286AIQPDYRDKL295 was highly conserved in genotype 2 PRRSV strains, whereas genotype 1 PRRSV strains had variable amino acids in this motif. Furthermore, a mutant of the motif carrying two constant amino acids of genotype 1 PRRSV, Cys290 and Glu293, failed to react with mAb 4D9. More importantly, the mAb 4D9 could differentiate genotype 2 PRRSV strains from genotype 1 PRRSV strains using Western blotting and immunofluorescence analysis.ConclusionOur findings suggest that Nsp10-specific mAb generated in this study could be a useful tool for basic research and may facilitate the establishment of diagnostic methods to discriminate between genotype 1 and genotype 2 PRRSV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.