Renal ischemia/reperfusion injury is a main cause of acute kidney injury (AKI) triggering an inflammatory response associated with infiltrating macrophages. Lipocalin-2 (Lcn2) levels correlate positively and protect against renal ischemia/reperfusion injury. However, the mechanisms remain unclear. The aim of study was to investigate the protective mechanisms of Lcn2 on renal ischemia/reperfusion injury. We found that Lcn2 deficiency significantly aggravated renal injury as evidenced by higher serum creatinine, more severe morphological injury, and increased tubular epithelial cell death in mice. We also observed that attenuated autophagy in Lcn2 mice, as autophagy markers LC3 II level was significantly decreased and p62 was increased in the Lcn2 mice after I/R, compared with that of wild type. Mechanistically, we found that recombinant Lcn2 attenuated hypoxia-induced apoptosis in proximal tubule epithelial cells in vitro, and downregulation of HIF-1α blunted Lcn2-induced autophagy and enhanced apoptosis. In addition, the Lcn2 attenuated NF-κb subunit p65 activation under hypoxia conditions. Thus, our findings provide a better understanding of the protective role of Lcn2 in kidney ischemia/reperfusion injury and suggest that Lcn2 may be a promising therapeutic target for treating patients with AKI.
Background: Renal anemia is an important complication of chronic kidney disease (CKD). In addition to insufficient secretion of erythropoietin (EPO) and erythropoiesis disorders, the impact of eryptosis on renal anemia demands attention. However, a systemic analysis concerning the pathophysiology of eryptosis has not been expounded. Summary: The complicated conditions in CKD patients, including oxidative stress, osmotic stress, metabolic stress, accumulation of uremic toxins, and iron deficiency, affects the normal skeleton structure of red blood cells (RBCs) and disturbs ionic homeostasis, causing phosphatidylserine to translocate to the outer lobules of the RBC membrane that leads to early elimination and/or shortening of the red blood cell lifespan (RBCL). Inadequate synthesis of RBCs cannot compensate for their accelerated destruction, thus exacerbating renal anemia. Meanwhile, EPO treatment alone will not reverse renal anemia. A variety of eryptosis inhibitors have so far been found, but evidence of their effectiveness in the treatment of CKD remains to be established. Key Messages: In this review, the pathophysiological processes and factors influencing eryptosis in CKD were elucidated. The aim of this review is to underline the importance of eryptosis in renal anemia and determine some promising research directions or possible therapeutic targets to correct anemia in CKD.
Context: Triptolide and amlodipine are often simultaneously used for reducing urine protein excretion after renal transplantation in China clinics.Objective: This study investigated the effects of triptolide on the pharmacokinetics of amlodipine in male Sprague–Dawley rats.Materials and methods: The pharmacokinetics of amlodipine (1 mg/kg) with or without triptolide pre-treatment (2 mg/kg/day for seven days) were investigated using a sensitive and reliable LC–MS/MS method. Additionally, the inhibitory effects of triptolide on the metabolic stability of amlodipine were investigated using rat liver microsome incubation systems.Results: The results indicated that when the rats were pre-treated with triptolide, the Cmax of amlodipine increased from 13.78 ± 3.57 to 19.96 ± 4.56 ng/mL (p < 0.05), the Tmax increased from 4.04 ± 1.15 to 5.89 ± 1.64 h (p < 0.05), and the AUC0–t increased by approximately 104% (p < 0.05), which suggested that the pharmacokinetic behaviour of amlodipine was affected after oral co-administration of triptolide. Additionally, the metabolic half-life was prolonged from 22.5 ± 4.26 to 36.8 ± 6.37 min (p < 0.05) with the pre-treatment of triptolide.Conclusions: In conclusion, these results indicated that triptolide could affect the pharmacokinetics of amlodipine, possibly by inhibiting the metabolism of amlodipine in rat liver when they are co-administered.
Diabetic kidney disease (DKD), a common cause of end-stage renal disease, is a serious complication that develops with the progression of chronic diabetes. Its main clinical manifestations are persistent proteinuria and/or a progressive decline in the estimated glomerular filtration rate. Podocytes, terminally differentiated glomerular visceral epithelial cells, constitute the glomerular filtration barrier together with the basement membrane and endothelial cells, and the structural and functional barrier integrity is closely related to proteinuria. In recent years, an increasing number of studies have confirmed that podocyte injury is the central target of the occurrence and development of DKD, and research on exosomes in podocyte injury associated with DKD has also made great progress. The aim of this review is to comprehensively describe the potential diagnostic value of exosomes in podocyte injury associated with DKD, analyze the mechanism by which exosomes realize the communication between podocytes and other types of cells and discuss the possibility of exosomes as targeted therapy drug carriers to provide new targets for and insights into delaying the progression of and treating DKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.