Drug-induced rhabdomyolysis (DIR) is a serious adverse reaction and can be fatal. In the present study, we focused on the modeling and understanding of the molecular basis of DIR of small molecule drugs. A series of machine-learning models were developed using an Online Chemical Modeling Environment platform with a diverse dataset. A total of 80 machine-learning models were generated. Based on the topperforming individual models, a consensus model was also developed. The consensus model was available at https://ochem.eu/model/32214665, and the individual models can be accessed with the corresponding model IDs on the website. Furthermore, we also analyzed the difference of distributions of eight key physicochemical properties between rhabdomyolysis-inducing drugs and non-rhabdomyolysisinducing drugs. Finally, structural alerts responsible for DIR were identified from fragments of the Klekota-Roth fingerprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.