The driver gaze zone is an indicator of a driver’s attention and plays an important role in the driver’s activity monitoring. Due to the bad initialization of point-cloud transformation, gaze zone systems using RGB-D cameras and ICP (Iterative Closet Points) algorithm do not work well under long-time head motion. In this work, a solution for a continuous driver gaze zone estimation system in real-world driving situations is proposed, combining multi-zone ICP-based head pose tracking and appearance-based gaze estimation. To initiate and update the coarse transformation of ICP, a particle filter with auxiliary sampling is employed for head state tracking, which accelerates the iterative convergence of ICP. Multiple templates for different gaze zone are applied to balance the templates revision of ICP under large head movement. For the RGB information, an appearance-based gaze estimation method with two-stage neighbor selection is utilized, which treats the gaze prediction as the combination of neighbor query (in head pose and eye image feature space) and linear regression (between eye image feature space and gaze angle space). The experimental results show that the proposed method outperforms the baseline methods on gaze estimation, and can provide a stable head pose tracking for driver behavior analysis in real-world driving scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.