Corners play an important role in object identification methods used in machine vision and image processing systems. Single-scale feature detection finds it hard to detect both fine and coarse features at the same time. On the other hand, multi-scale feature detection is inherently able to solve this problem. This paper proposes an improved multi-scale corner detector with dynamic region of support, which is based on Curvature Scale Space (CSS) technique. The proposed detector first uses an adaptive local curvature threshold instead of a single global threshold as in the original and enhanced CSS methods. Second, the angles of corner candidates are checked in a dynamic region of support for eliminating falsely detected corners. The proposed method has been evaluated over a number of images and compared with some popular corner detectors. The results showed that the proposed method offers a robust and effective solution to images containing widely different size features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.