Cnidium monnieri is an economically important traditional Chinese medicinal plant. In this study, the complete chloroplast (cp) genome of C. monnieri was determined using the Illumina paired-end sequencing, the GetOrganelle de novo assembly strategy, as well as the GeSeq annotation method. Our results showed that the cp genome was 147,371 bp in length with 37.4% GC content and included a large single-copy region (94,361 bp) and a small single-copy region (17,552 bp) separated by a pair of inverted repeat regions (17,729 bp). A total of 129 genes were contained in the cp genome, including 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. We also investigated codon usage, RNA editing, repeat sequences, simple sequence repeats (SSRs), IR boundaries, and pairwise Ka/Ks ratios. Four hypervariable regions (trnD-trnY-trnE-trnT, ycf2, ndhF-rpl32-trnL, and ycf1) were identified as candidate molecular markers for species authentication. The phylogenetic analyses supported non-monophyly of Cnidium and C. monnieri located in tribe Selineae based on the cp genome sequences and internal transcribed spacer (ITS) sequences. The incongruence of the phylogenetic position of C. monnieri between ITS and cpDNA phylogenies suggested that C. monnieri might have experienced complex evolutions with hybrid and incomplete lineage sorting. All in all, the results presented herein will provide plentiful chloroplast genomic resources for studies of the taxonomy, phylogeny, and species authentication of C. monnieri. Our study is also conducive to elucidating the phylogenetic relationships and taxonomic position of Cnidium.
Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province, China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously distinguishable characters. The main distinguishing features of the cryptic species are as follows: long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-globose fruits, 1–2 vittae per furrow and 3–4 vittae on the commissure. The above-mentioned features differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based on ITS sequences and the complete chloroplast genome robustly supported that three accessions of L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis actually represents a new species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.