Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of HO and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman bands having unnormalized intensity/FWHM ratios lower than 200 counts/cm.
The presence of sulfate-rich fluids in natural magmatic hydrothermal systems and some carbonatite-related rare earth element (REE) deposits is paradoxical, because sulfate salts are known for their retrograde solubility, implying that they should be insoluble in high-temperature geofluids. Here, we show that the presence of quartz can significantly change the dissolution behavior of Na2SO4, leading to the formation of extremely sulfate-rich fluids (at least 42.8 wt% Na2SO4) at temperatures >∼330 °C. The elevated Na2SO4 solubility results from prograde dissolution of immiscible sulfate melt, the water-saturated solidus of which decreases from ≥∼450 °C in the binary Na2SO4-H2O system to ∼270 °C in the presence of silica. This implies that sulfate-rich fluids should be common in quartz-saturated crustal environments. Furthermore, we found that the sulfate-rich fluid is a highly effective medium for Nd mobilization. Thermodynamic modeling predicts that sulfate ions are more effective in complexing REE(III) than chloride ions. This reinforces the idea that REEs can be transported as sulfate complexes in sulfate-rich fluids, providing an alternative to the current REE transport paradigm, wherein chloride complexing accounts for REE solubility in ore fluids.
The phase transitions involving calcite (CaCO3-I), CaCO3-II, CaCO3-III and CaCO3-IIIb were investigated using a diamond anvil cell and micro-Raman spectroscopy. Based on the results obtained from in situ observations and Raman measurements made with six natural calcite crystals, the phase transition from calcite to CaCO3-II took place between 1.56 and 1.67 GPa under ambient temperature. Under a precise pressure of 1.97 ± 0.03 GPa, three CaCO3 samples were observed to transform from CaCO3-II directly to CaCO3-III, while in the other three samples both CaCO3-III and CaCO3-IIIb crystal structures were detected. Transformation from CaCO3-IIIb to CaCO3-III was completed in a short period in one sample, whereas in the other two samples coexistence of CaCO3-III and CaCO3-IIIb was observed over a wide pressure range from 1.97 to 3.38 GPa, with sluggish transformation from CaCO3-IIIb to CaCO3-III being observed after the samples were preserved under 3.38 GPa for 72 h. Hence, it can be concluded that CaCO3-IIIb is a metastable intermediate phase occurring during the reconstructive transformation from CaCO3-II to CaCO3-III. Splitting of the C–O in-plane bending (ν4) and symmetric stretching (ν1) vibrations and appearance of new lattice vibrations in the Raman spectra of CaCO3-III and CaCO3-IIIb suggest a lowering in crystal symmetry during the transformation from CaCO3-II through CaCO3-IIIb to CaCO3-III, which is in good agreement with the observed sequence of phase symmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.