The vast majority of patients with T2DM have multiple comorbidities. To ensure a comprehensive approach to patient management, the presence of multimorbidity should be considered in the context of clinical decision making.
The role of the alkali metal cations in halide perovskite solar cells is not well understood. Using synchrotron-based nano–x-ray fluorescence and complementary measurements, we found that the halide distribution becomes homogenized upon addition of cesium iodide, either alone or with rubidium iodide, for substoichiometric, stoichiometric, and overstoichiometric preparations, where the lead halide is varied with respect to organic halide precursors. Halide homogenization coincides with long-lived charge carrier decays, spatially homogeneous carrier dynamics (as visualized by ultrafast microscopy), and improved photovoltaic device performance. We found that rubidium and potassium phase-segregate in highly concentrated clusters. Alkali metals are beneficial at low concentrations, where they homogenize the halide distribution, but at higher concentrations, they form recombination-active second-phase clusters.
BackgroundDelirium is a frequent complication after cardiac surgery and its occurrence is associated with poor outcomes. The purpose of this study was to investigate the impact of perioperative dexmedetomidine administration on the incidence of delirium in elderly patients after cardiac surgery.MethodsThis randomized, double-blinded, and placebo-controlled trial was conducted in two tertiary hospitals in Beijing between December 1, 2014 and July 19, 2015. Eligible patients were randomized into two groups. Dexmedetomidine (DEX) was administered during anesthesia and early postoperative period for patients in the DEX group, whereas normal saline was administered in the same rate for the same duration for patients in the control (CTRL) group. The primary endpoint was the incidence of delirium during the first five days after surgery. Secondary endpoints included the cognitive function assessed on postoperative days 6 and 30, the overall incidence of non-delirium complications within 30 days after surgery, and the all-cause 30-day mortality.ResultsTwo hundred eighty-five patients were enrolled and randomized. Dexmedetomidine did not decrease the incidence of delirium (4.9% [7/142] in the DEX group vs 7.7% [11/143] in the CTRL group; OR 0.62, 95% CI 0.23 to 1.65, p = 0.341). Secondary endpoints were similar between the two groups; however, the incidence of pulmonary complications was slightly decreased (OR 0.51, 95% CI 0.26 to 1.00, p = 0.050) and the percentage of early extubation was significantly increased (OR 3.32, 95% CI 1.36 to 8.08, p = 0.008) in the DEX group. Dexmedetomidine decreased the required treatment for intraoperative tachycardia (21.1% [30/142] in the DEX group vs 33.6% [48/143] in the CTRL group, p = 0.019), but increased the required treatment for postoperative hypotension (84.5% [120/142] in the DEX group vs 69.9% [100/143] in the CTRL group, p = 0.003).ConclusionsDexmedetomidine administered during anesthesia and early postoperative period did not decrease the incidence of postoperative delirium in elderly patients undergoing elective cardiac surgery. However, considering the low delirium incidence, the trial might have been underpowered.Trial RegistrationClinicalTrials.gov NCT02267538
Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s−1, comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.