Ranking is one of the key problems in information retrieval. Recently, there has been significant interest in a class of ranking algorithms based on the assumption that data is sampled from a low dimensional manifold embedded in a higher dimensional Euclidean space.In this paper, we study a popular graph Laplacian based ranking algorithm [23] using an analytical method, which provides theoretical insights into the ranking algorithm going beyond the intuitive idea of "diffusion." Our analysis shows that the algorithm is sensitive to a commonly used parameter due to the use of symmetric normalized graph Laplacian. We also show that the ranking function may diverge to infinity at the query point in the limit of infinite samples. To address these issues, we propose an improved ranking algorithm on manifolds using Green's function of an iterated unnormalized graph Laplacian, which is more robust and density adaptive, as well as pointwise continuous in the limit of infinite samples.We also for the first time in the ranking literature empirically explore two variants from a family of twice normalized graph Laplacians. Experimental results on text and image data support our analysis, which also suggest the potential value of twice normalized graph Laplacians in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.