Root diameter, a critical indicator of root physiological function, varies greatly among tree species, but the underlying mechanism of this high variability is unclear. Here, we sampled 50 tree species across tropical and temperate zones in China, and measured root morphological and anatomical traits along the first five branch orders in each species. Our objectives were (i) to reveal the relationships between root diameter, cortical thickness and stele diameter among tree species in tropical and temperate forests, and (ii) to investigate the relationship of both root morphological and anatomical traits with divergence time during species radiation. The results showed that root diameter was strongly affected by cortical thickness but less by stele diameter in both tropical and temperate species. Changes in cortical thickness explained over 90% of variation in root diameter for the first order, and ∼74-87% for the second and third orders. Thicker roots displayed greater cortical thickness and more cortical cell layers than thinner roots. Phylogenetic analysis demonstrated that root diameter, cortical thickness and number of cortical cell layers significantly correlated with divergence time at the family level, showing similar variation trends in geological time. The results also suggested that trees tend to decrease their root cortical thickness rather than stele diameter during species radiation. The close linkage of variations in root morphology and anatomy to phylogeny as demonstrated by the data from the 50 tree species should provide some insights into the mechanism of root diameter variability among tree species.
Fine roots of plants play an important role in terrestrial ecosystems. There is a close association between the anatomical characteristics and physiological and ecological functions of plants, but we still have a very limited knowledge of anatomical traits. For example, (1) we do not know if herbs and grasses have anatomical patterns similar to those of woody plants, and (2) the variation among different woody plants in the same ecosystem is unclear. In the present study, we analysed the anatomical structures of the fine root systems of various groups of vascular plants (ferns, eudicot herbs, monocots and woody plants) from the same ecosystem (a natural secondary forest on Mao'er Mountain, Heilongjiang, China) to answer the following questions: (1) How does the anatomy of the fine roots change with root order in various plant groups in the same ecosystem? (2) What is the pattern of variation within group? The results show that anatomical traits can be divided into 3 categories: traits that indicate the root capacity to transport resource along the root (stele diameter, xylem cell diameter and xylem cell area); traits that indicate absorptive capacity cortical thickness, (the number of cortical cell layers and the diameter of cortical cells); and traits that are integrated indicators (diameter and the stele to root diameter ratio). The traits indicate the root capacity to transport resource along the root order is generally similar among groups, but absorptive capacity is very different. The shift in function is the main factor influencing the fine root anatomy. Some traits show large variation within groups, but the variations in other traits are small. The traits indicate that the lower-order roots (absorbing roots) in distinct groups are of the first one or two root order in ferns, the first two or three orders in eudicot herbs, the first (only two root orders) or first two orders (more than three root orders) in monocots and the first four or five root orders in woody plants and the other roots are higher-order roots (transport roots). The result will helpful to understand the similarities and differences among groups and the physiological and ecological functions of plant roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.