In the farmland Internet of Things, to achieve precise control of production, it is necessary to obtain more data support, which requires the deployment of many sensors, and this will inevitably bring about high investment and high-cost problems. This paper mainly studies the optimization of sensor placement in the agricultural field. Through compressed sensing and algorithm optimization, the number of sensors used is reduced and the cost is reduced on the premise of ensuring the effect. At present, there are many mature sensor layout optimization methods, but these methods will have incomplete parameters due to experimental conditions and environmental factors. They are more suitable for structural health monitoring and lack research in agricultural applications. Considering that the sensor layout optimization can be converted into the characteristics of image compression selection and the compression effect of the compressed sensing theory is better, therefore, this paper proposes a sensor layout optimization method based on compressed sensing. Due to the structural characteristics of the existing measurement matrix in the compressed sensing theory, the specific position distribution of the optimized sensor layout cannot be obtained directly. This paper improves the existing sparse random measurement matrix to determine the number of sensors required for a given region and the function of the specific location of each sensor. The experimental results show that soil moisture can be measured with a small error of 0.91 by using 1/3 of the original sensor number. The result of data reconstruction using 1/6 of the original sensor is average, and the average error is up to 1.68, which is suitable for the environment with small data fluctuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.