Staphylococcus aureusis the leading pathogen involved inbovine mastitis, but knowledgeabout antimicrobial resistance, virulence factors, and genotypes of Staphylococcus aureus resulting in bovine mastitis in Ningxia, China, is limited. Therefore, antimicrobial susceptibility, virulence gene, and randomly amplified polymorphic DNA (RAPD) analyses of Staph. aureus were carried out. A total of 327 milk samples from cows with clinical and subclinical mastitis in 4 regions of Ningxia were used for the isolation and identification of pathogens according to phenotypic and molecular characteristics. Antimicrobial susceptibility against 22 antimicrobial agents was determined by disk diffusion. The presence of 8 virulence genes in Staph. aureus isolates was tested by PCR. Genotypes of isolates were investigated based on RAPD. Results showed that 35 isolates obtained from mastitis milk samples were identified as Staph. aureus. The isolates were resistant to sulfamethoxazole (100%), penicillin G (94.3%), ampicillin (94.3%), erythromycin (68.6%), azithromycin (68.6%), clindamycin (25.7%), amoxicillin (11.4%), and tetracycline (5.7%). All of the isolates contained one or more virulence genes with average (standard deviation) of 6.6±1.6. The most prevalent virulence genes were hlb (97.1%), followed by fnbpA, hla, coa (94.3% each), nuc (85.7%), fnbpB (80%), clfA (77.1%), and tsst-1 (40%). Nine different gene patterns were found and 3 of them were the dominant gene combinations (77.1%). Staphylococcus aureus isolates (n=35) were divided into 6 genotypes by RAPD tying, the genotypes III and VI were the most prevalent genotypes. There was greatvariation in genotypes of Staph. aureus isolates, not only among different farms, but also within the same herd in Ningxia province. The study showed a high incidence of Staph. aureus with genomic variation of resistance genes, which is matter of great concern in public and animal health in Ningxia province of China.
BackgroundCandida spp. is the vital pathogen involved in mycotic mastitis of cows. However the epidemiology and infection of Candida species in mycotic mastitis of cow in Ningxia province of China has not been explored. In the present study, the epidemiology, antimicrobial susceptibility and virulence-related genes of non-albicans Candida (NAC) species were investigated.MethodsA total of 482 milk samples from cows with clinical mastitis in four herds of Yinchuan, Ningxia were collected and used for the isolation and identification of mastic pathogens by phenotypic and molecular characteristics, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The antimicrobial susceptibility to antifungal agents was also determined by a disk diffusion assay. The presence of virulence-related genes was determined by polymerase chain reaction (PCR).ResultsA total of 60 isolates from nine different Candida species were identified from 256 (60/256, 23.44%) milk samples. The most frequently identified species in cows with clinical mastitis groups were Candida krusei (n = 14) and Candida parapsilosis (n = 6). Others include Candida lipolytica, Candida lusitaniae, Cryptococcus neoformans. But no Candida albicans was identified in this study. Interestingly, All C. krusei isolates (14/14) were resistant to fluconazole, fluorocytosine, itraconazole and ketoconazole, 2 out of 14 C. krusei were resistant to amphotericin, and 8 out of the 14 were resistant to nystatin. Similarly, all six C. parapsilosis isolates were resistant to fluorocytosine, but susceptible to fluconazole, ketoconazole and nystatin; two of the six were resistant amphotericin and itraconazole. Molecularly, all of the C. parapsilosis isolates carried eight virulence-related genes, FKS1, FKS2, FKS3, SAP1, SAP2, CDR1, ERG11 and MDR1. All of the C. krusei isolates contained three virulence-related genes, ERG11, ABC2 and FKS1.ConclusionThese data suggested that Candida species other than C. albicans played a pathogenic role in mycotic mastitis of cows in Yinchuan, Ningxia of China. The high incidence of drug-resistant genes in C. parapsilosis and C. krusei also highlighted a great concern in public and animal health in this region.
In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC50) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs.
Staphylococcus aureus is one of the major etiological agents of bovine mastitis, harboring a wide variety of staphylococcal superantigen (SAg) toxin genes. The SAg toxin genes are reported to be closely associated with the pathogenicity of the Staph. aureus causing the bovine mastitis. This study was conducted to investigate SAg toxin gene profiles and to assess the relationships among SAg toxin genes, genotypes of Staph. aureus, and their pathogenic properties. A total of 327 quarter milk samples were collected from bovine mastitis cases for isolation and identification of pathogens. In total, 35 isolates were identified as Staph. aureus, and the prevalence of Staph. aureus in milk samples was 13.6% (35/256). Polymerase chain reaction (PCR) and randomly amplified polymorphic DNA (RAPD) assays were used to detect the SAg toxin genes and to genotype Staph. aureus strains isolated from milk samples of bovine mastitis in 10 dairy herds located in Ningxia, China, respectively. The results showed that among the Staph. aureus isolates (n = 35), 71.4% (n = 25) of isolates carried at least one SAg toxin gene. In total, 18 SAg genes and 21 different gene combination patterns were detected among these isolates. The most common SAg genes in Staph. aureus isolates were sei, sen, and seu (44.0% each), followed by seo, tst, and etB (28.0% each), etA (24.0%), sem and sep (16.0% each), seb, sec, sed, and sek (12.0% each), and sea and seh genes (8.0% each); the seg, sej, and ser genes were present in 4.0% of the isolates. Three gene combinations were found to be related to mobile genetic elements that carried 2 or more genes. The egc-cluster of the seg-sei-sem-sen-seo genes, located on the pathogenicity island Type I υSaβ, was detected in 16% of isolates. Interestingly, we observed 6 RAPD genotypes (I to VI) in Staph. aureus isolates, and 2 of these genotypes were strongly associated with the severity of bovine mastitis; there was a close relationship between the RAPD genotypes and SAg genes. Isolates of RAPD type III were more frequently associated with clinical and subclinical mastitis, whereas strains of type VI were mostly related to subclinical mastitis. In addition, SAg genes were related to severity of bovine mastitis. We conclude that an obvious relationship exists among RAPD genotypes, SAg toxin genes, and severity of bovine mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.