Abstract. We report on the development of a cavityenhanced aerosol single-scattering albedometer based on incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) combined with an integrating sphere (IS) for simultaneous in situ measurements of aerosol scattering and extinction coefficients in an exact same sample volume. The cavity-enhanced albedometer employed a blue light-emitting-diode (LED)-based IBBCEAS approach for the measurement of wavelength-resolved aerosol optical extinction over the spectral range of 445-480 nm and an integrating sphere nephelometer coupled to the IBBCEAS setup for the measurement of aerosol scattering. The scattering signal was measured with a single-channel photomultiplier tube (PMT), providing an averaged value over a narrow bandwidth (full-width at half-maximum, FWHM, ∼ 9 nm) in the spectral region of 465-474 nm. A scattering coefficient at a wavelength of 470 nm was deduced as an averaged scattering value over the spectral region of 465-474 nm and used for data analysis and instrumental performance comparison. Performance evaluation of the albedometer was carried out using laboratory-generated particles and ambient aerosol. The scattering and extinction measurements of monodisperse polystyrene latex (PSL) spheres generated in the laboratory proved excellent correlation between two channels of the albedometer. The retrieved refractive index (RI) of the PSL particles from the measured scattering and extinction efficiencies agreed well with the values reported in previously published papers. Aerosol light scattering and extinction coefficients, single-scattering albedo (SSA) and NO 2 concentrations in an ambient sample were directly and simultaneously measured using the albedometer developed. The instrument developed was validated via an intercomparison of the measured aerosol scattering coefficients and NO 2 trace gas concentrations to a TSI 3563 integrating nephelometer and a chemiluminescence detector, respectively.
This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO were improved to 8 pptv and 40 pptv in 21 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.