The digital etching characteristics of p+ Si and Si0.7Ge0.3 using the combinations of HNO3 oxidation and BOE oxide removal processes were studied. Experiments showed that oxidation saturates with time due to low activation energy. A physical model was presented to describe the wet oxidation process with nitric acid. The model was calibrated with experimental data and the oxidation saturation time, final oxide thickness, and selectivity between Si0.7Ge0.3 and p+ Si were obtained. The digital etch of laminated Si0.7Ge0.3/p+ Si was also investigated. The depth of the tunnels formed by etching SiGe layers between two Si layers was found in proportion to digital 2 etching cycles. And oxidation would also saturate and the saturated relative etched amount per cycle (REPC) was 0.5 nm (4 monolayers). A corrected selectivity calculation formula was presented. The oxidation model was also calibrated with Si0.7Ge0.3/p+ Si stacks, and selectivity from model was the same with the corrected formula. The model can also be used to analyze process variations and repeatability. And it could act as a guidance for experiment design.Selectivity and repeatability should make a trade-off.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.