Neural tube defects result from failure to completely close neural tubes during development. Maternal diabetes is a substantial risk factor for neural tube defects, and available evidence suggests that the mechanism that links hyperglycemia to neural tube defects involves oxidative stress and apoptosis. We demonstrated that maternal hyperglycemia correlated with activation of the apoptosis signal–regulating kinase 1 (ASK1) in the developing neural tube, and Ask1 gene deletion was associated with reduced neuroepithelial cell apoptosis and development of neural tube defects. ASK1 activation stimulated the activity of the transcription factor FoxO3a, which increased the abundance of the apoptosis-promoting adaptor protein TRADD, leading to activation of caspase 8. Hyperglycemia-induced apoptosis and the development of neural tube defects were reduced with genetic ablation of either FoxO3a or Casp8 or inhibition of ASK1 by thioredoxin. Examination of human neural tissues affected by neural tube defects revealed increased activation or abundance of ASK1, FoxO3a, TRADD, and caspase 8. Thus, activation of an ASK1–FoxO3a–TRADD–caspase 8 pathway participates in the development of neural tube defects, which could be prevented by inhibiting intermediates in this cascade.
Embryos exposed to high glucose exhibit aberrant maturational and cytoarchitectural cellular changes, implicating cellular organelle stress in diabetic embryopathy. c-Jun-N-terminal kinase 1/2 (JNK1/2) activation is a causal event in maternal diabetes–induced neural tube defects (NTD). However, the relationship between JNK1/2 activation and endoplasmic reticulum (ER) stress in diabetic embryopathy has never been explored. We found that maternal diabetes significantly increased ER stress markers and induced swollen/enlarged ER lumens in embryonic neuroepithelial cells during neurulation. Deletion of either jnk1 or jnk2 gene diminished hyperglycemia-increased ER stress markers and ER chaperone gene expression. In embryos cultured under high-glucose conditions (20 mmol/L), the use of 4-phenylbutyric acid (4-PBA), an ER chemical chaperone, diminished ER stress markers and abolished the activation of JNK1/2 and its downstream transcription factors, caspase 3 and caspase 8, and Sox1 neural progenitor apoptosis. Consequently, both 1 and 2 mmol/L 4-PBA significantly ameliorated high glucose–induced NTD. We conclude that hyperglycemia induces ER stress, which is responsible for the proapoptotic JNK1/2 pathway activation, apoptosis, and NTD induction. Suppressing JNK1/2 activation by either jnk1 or jnk2 gene deletion prevents ER stress. Thus, our study reveals a reciprocal causation of ER stress and JNK1/2 in mediating the teratogenicity of maternal diabetes.
isting maternal diabetes increases the risk of neural tube defects (NTDs). The mechanism underlying maternal diabetes-induced NTDs is not totally defined, and its prevention remains a challenge. Autophagy, an intracellular process to degrade dysfunction protein and damaged cellular organelles, regulates cell proliferation, differentiation, and apoptosis. Because autophagy impairment causes NTDs reminiscent of those observed in diabetic pregnancies, we hypothesize that maternal diabetes-induced autophagy impairment causes NTD formation by disrupting cellular homeostasis, leading to endoplasmic reticulum (ER) stress and apoptosis, and that restoration of autophagy by trehalose, a natural disaccharide, prevents diabetes-induced NTDs. Embryos from nondiabetic and type 1 diabetic mice fed with or without 2 or 5% trehalose water were used to assess markers of autophagy, ER stress, and neurogenesis, numbers of autophagosomes, gene expression that regulates autophagy, NTD rates, indices of mitochondrial dysfunction, and neuroepithelial cell apoptosis. Maternal diabetes suppressed autophagy by significantly reducing LC3-II expression, autophagosome numbers, and GFP-LC3 punctate foci in neuroepithelial cells and by altering autophagy-related gene expression. Maternal diabetes delayed neurogenesis by blocking Sox1 neural progenitor differentiation. Trehalose treatment reversed autophagy impairment and prevented NTDs in diabetic pregnancies. Trehalose resolved homeostatic imbalance by correcting mitochondrial defects, dysfunctional proteins, ER stress, apoptosis, and delayed neurogenesis in the neural tubes exposed to hyperglycemia. Our study demonstrates for the first time that maternal diabetes suppresses autophagy in neuroepithelial cells of the developing neural tube, leading to NTD formation, and provides evidence for the potential efficacy of trehalose as an intervention against hyperglycemia-induced NTDs. diabetic embryopathy; autophagy; trehalose; neurogenesis; neural tube defects PREGESTATIONAL DIABETES significantly increases the risk of neural tube defects (NTDs), also known as diabetic embryopathy. There are three to 10 times more NTDs in the offspring of diabetic mothers than in those of nondiabetic mothers (3, 9, 36). Because optimal glycemic control is difficult to achieve and maintain, and even transient exposure to diabetes causes NTDs, maternal diabetes-induced NTDs are significant health problems for both the mother and child. The seriousness of these relationships is emphasized by the upsurge in diabetic pregnancies; nearly 3 million American women and 70 million women worldwide of reproductive age (18 -44 yr) have diabetes today, and this number is expected double by 2030. Although diabetic mellitus is a complex metabolic disease, hyperglycemia is the sole mediator of diabetes teratogenicity. Indeed, clinical studies have revealed a strong correlation between the degree of maternal hyperglycemia and the rate and severity of birth defects (15, 29). When whole rodent embryos are cultured in high concentra...
Oxidative stress and apoptosis are implicated in the pathogenesis of diabetic embryopathy. The proapoptotic c-Jun NH2-terminal kinases (JNK)1/2 activation is associated with diabetic embryopathy. We sought to determine whether 1) hyperglycemia-induced oxidative stress is responsible for the activation of JNK1/2 signaling, 2) JNK1 contributes to the teratogenicity of hyperglycemia, and 3) both JNK1 and JNK2 activation cause activation of downstream transcription factors, caspase activation, and apoptosis, resulting in neural tube defects (NTDs). Wild-type (WT) embryos from nondiabetic WT dams and WT, superoxide dismutase (SOD)1–overexpressing, jnk1+/−, jnk1−/−, and jnk2−/− embryos exposed to maternal hyperglycemia were used to assess JNK1/2 activation, NTDs, activation of transcription factors downstream of JNK1/2, caspase cascade, and apoptosis. SOD1 overexpression abolished diabetes-induced activation of JNK1/2 and their downstream effectors: phosphorylation of c-Jun, activating transcription factor 2, and E twenty-six–like transcription factor 1 and dephosphorylation of forkhead box class O3a. jnk1−/− embryos had significantly lower incidences of NTDs than those of WT or jnk1+/− embryos. Either jnk1 or jnk2 gene deletion blocked diabetes-induced activation of JNK1/2 signaling, caspases 3 and 8, and apoptosis in Sox1+ neural progenitors of the developing neural tube. Our results show that JNK1 and JNK2 are equally involved in diabetic embryopathy and that the oxidative stress–JNK1/2–caspase pathway mediates the proapoptotic signals and the teratogenicity of maternal diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.