a b s t r a c tThe pyrazolone structural motif is a critical element of drugs aimed at different biological end-points. Medicinal chemistry researches have synthesized drug-like pyrazolone candidates with several medicinal features including antimicrobial, antitumor, CNS (central nervous system) effect, anti-inflammatory activities and so on. Meanwhile, SAR (Structure-Activity Relationship) investigations have drawn attentions among medicinal chemists, along with a plenty of analogues have been derived for multiple targets. In this review, we comprehensively summarize the biological activity and SAR for pyrazolone analogues, wishing to give an overall retrospect and prospect on the pyrazolone derivatives.
Colorectal cancer (CRC) is the third most common cancer worldwide, with high incidence and mortality rates. Conventional therapies, including surgery, chemotherapy and radiation, are extensively used for the treatment of CRC. However, patients present with adverse effects, such as toxicity, hepatic injury and drug resistance. Thus, there is an urgent requirement to identify effective and safe therapy for CRC. Curcumin (CUR), a polyphenol substrate extracted from the rhizome of Curcuma longa , has been extensively studied for the treatment of CRC due to its high efficacy and fewer side effects. Previous studies have reported that several signaling pathways, such as NF-κB, Wnt/β-catenin, are involved in the antitumor effects of CUR in vitro . However, the effect and mechanisms in vivo are not yet fully understood. The present study aimed to determine the molecular mechanism of colorectal cancer in vivo . Reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses were performed to determine the underlying molecular mechanism of curcumin's anti-cancer effect in azoxymethane-dextran sodium sulfate induced colorectal cancer. The results of the present study demonstrated that CUR suppressed tumorigenesis in AOM-DSS induced CRC in mice, and anticancer effects were exerted by suppressing the expression of pro-inflammatory cytokines, and downregulating Axin2 in the Wnt/β-catenin signaling pathway. Taken together, these results exhibit the potential in vivo mechanisms of the anticancer effects of CUR, and highlight Axin2 as a potential therapeutic target for CRC.
Solanum nigrum Linn., is a common edible medicinal herb of the Solanaceae family which is native to Southeast Asia and is now widely distributed in temperate to tropical regions of Europe, Asia, and America. Traditionally, it has been used to treat various cancers, acute nephritis, urethritis, leucorrhea, sore throat, toothache, dermatitis, eczema, carbuncles, and furuncles. Up to now, 188 chemical constituents have been identified from S. nigrum. Among them, steroidal saponins, alkaloids, phenols, and polysaccharides are the major bioactive constituents. Investigations of pharmacological activities of S. nigrum revealed that this edible medicinal herb exhibits a wide range of therapeutic potential, including antitumor, anti-inflammatory, antioxidant, antibacterial, and neuroprotective activities both in vivo and in vitro. This article presents a comprehensive and systematic overview of the botanical, traditional uses, phytochemical compositions, pharmacological properties, clinical trials, and toxicity of S. nigrum to provide the latest information for further exploitation and applications of S. nigrum in functional foods and medicines.
Isodon rubescens is a medicinal and food plant, often eaten as a wild vegetable in ancient China, and has been widely used for decades to treat sore throats, tonsillitis, colds and headaches, bronchitis, chronic hepatitis, joint rheumatism, snake and insect bites, and various cancers. This comprehensive and systematic review of the ethnomedicinal uses, phytochemical composition, pharmacological activity, quality control and toxicology of I. rubescens provides updated information for the further development and application in the fields of functional foods and new drugs research. To date, a total of 324 substances have been isolated and identified from the plant, including terpenoids, flavonoids, polyphenols, alkaloids, amino acids, and volatile oils. Among these substances, diterpenoids are the most important and abundant bioactive components. In the past decades pharmacological studies have shown that I. rubescens has significant biological activities, especially in the modulation of antitumor and multidrug resistance. However, most of these studies have been conducted in vitro. In-depth in vivo studies on the quality control of its crude extracts and active ingredients, as well as on metabolite identification are still very limited. Therefore, more well-designed preclinical and clinical studies are needed to confirm the reported therapeutic potential of I. rubescens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.