This study proposes a brain-computer interface (BCI)- and Internet of Things (IoT)-based smart ward collaborative system using hybrid signals. The system is divided into hybrid asynchronous electroencephalography (EEG)-, electrooculography (EOG)- and gyro-based BCI control system and an IoT monitoring and management system. The hybrid BCI control system proposes a GUI paradigm with cursor movement. The user uses the gyro to control the cursor area selection and uses blink-related EOG to control the cursor click. Meanwhile, the attention-related EEG signals are classified based on a support-vector machine (SVM) to make the final judgment. The judgment of the cursor area and the judgment of the attention state are reduced, thereby reducing the false operation rate in the hybrid BCI system. The accuracy in the hybrid BCI control system was 96.65 ± 1.44%, and the false operation rate and command response time were 0.89 ± 0.42 events/min and 2.65 ± 0.48 s, respectively. These results show the application potential of the hybrid BCI control system in daily tasks. In addition, we develop an architecture to connect intelligent things in a smart ward based on narrowband Internet of Things (NB-IoT) technology. The results demonstrate that our system provides superior communication transmission quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.