The NASA Global‐scale Observations of the Limb and Disk (GOLD) mission has flown an ultraviolet‐imaging spectrograph on SES‐14, a communications satellite in geostationary orbit at 47.5°W longitude. That instrument observes the Earth's far ultraviolet (FUV) airglow at ~134–162 nm using two identical channels. The observations performed include limb scans, stellar occultations, and images of the sunlit and nightside disk from 6:10 to 00:40 universal time each day. Initial analyses reveal interesting and unexpected results as well as the potential for further studies of the Earth's thermosphere‐ionosphere system and its responses to solar‐geomagnetic forcing and atmospheric dynamics. Thermospheric composition ratios for major constituents, O and N2, temperatures near 160 km, and exospheric temperatures are retrieved from the daytime observations. Molecular oxygen (O2) densities are measured using stellar occultations. At night, emission from radiative recombination in the ionospheric F region is used to quantify ionospheric density variations in the equatorial ionization anomaly (EIA). Regions of depleted F region electron density are frequently evident, even during the current solar minimum. These depletions are caused by the “plasma fountain effect” and are associated with the instabilities, scintillations, or “spread F” seen in other types of observations, and GOLD makes unique observations for their study.
We conduct observational and modeling studies of thermospheric composition responses to weak geomagnetic activity (nongeomagnetic storms). We found that the thermospheric O and N 2 column density ratio (∑O/N 2) in part of the Northern Hemisphere measured by Global-scale Observations of the Limb and Disk (GOLD) exhibited large and long-lived depletions during weak geomagnetic activity in May and June 2019. The depletions reached 30% of quiet time values, extended equatorward to 10°N and lasted more than 10 hr. Furthermore, numerical simulation results are similar to these observations and indicate that the ∑O/N 2 depletions were pushed westward by zonal winds. The ∑O/N 2 evolution during weak geomagnetic activity suggests that the formation mechanism of the ∑O/N 2 depletions is similar to that during a geomagnetic storm. The effects of weak geomagnetic activity are often ignored but, in fact, are important for understanding thermosphere neutral composition variability and hence the state of the thermosphere-ionosphere system. Plain Language Summary The column density ratio of O and N 2 (∑O/N 2) has been used to monitor geomagnetic storm effects in the thermosphere, as well as providing valuable information about the ionosphere. This triggers an important question: Can weak geomagnetic activities cause changes in thermospheric composition too? Here, we conduct studies based on geostationary orbit observations and numerical simulations. Model outputs replicate the general morphology of this variability for the cases examined. This made it possible to understand the cause of the composition response to weak geomagnetic forcing. We found that the ∑O/N 2 depletion observed was pushed westward by the zonal wind. During weak geomagnetic activity, the ∑O/N 2 response is similar to the response during a geomagnetic storm, albeit it is weaker. In summary, our study suggests that weak geomagnetic activity can also generate strong and long-lived responses in thermosphere composition during solar minimum and that this response can be important to understanding the thermosphere and ionosphere variability during the so-called quiet times.
Global seismic waveform inversion can provide information on where the 2013 M s 7.0 Lushan earthquake occurred in Sichuan Province, China, and how its aftershock sequence expanded. To investigate the generation mechanism of the Lushan earthquake and its relation to the 2008 Wenchuan earthquake (M s 8.0), 50 temporary seismic stations were installed in the source area following the Lushan earthquake. Crustal stress data were also collected along the Longmen-Shan Fault zone (LMFZ) to reveal its influence on the generation of the Lushan earthquake. Seismic imaging and crustal stress analysis have revealed that the Lushan earthquake occurred in a distinct area with high velocity (Vp, Vs), low Poisson's ratio (σ), and high crustal stress. The high-velocity zone at the Lushan source may reflect Precambrian metasedimentary or igneous rock in the seismogenic layer, which enables the accumulation of high crustal stress to generate large earthquakes. However, a sharply contrasting gap zone with low-velocity, high-σ anomalies is clearly imaged in the upper crust under the concatenated area between the Lushan and Wenchuan earthquakes. Seismic images indicate that the low-velocity gap zone is associated with fluid-bearing ductile flow from the lower crustal materials of Tibet being pushed into a weakened segment of the LMFZ. This study suggests that the 2013 Lushan earthquake may have been triggered by high crustal stress accumulation together with high coseismic stress further increased by the Wenchuan earthquake in the metamafic seismogenic layer. Contrasting rheological variations in the crust and crustal stress changes along the LMFZ control the rupture processes that generated the Lushan and Wenchuan earthquakes, as well as the generation of new earthquakes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.