This paper presents a hybrid fire simulation method for civil structures in which a critical element subject to fire is experimentally tested while the remaining structural system is numerically analyzed simultaneously. The proposed method is different from previous approaches that it is fully validated with full-scale specimen subjected to high temperature and that it is automated displacement-controlled test with deformation error compensation. The two substructures (i.e. an experimental model and a numerical model) are integrated through network to enforce displacement compatibility and force equilibrium. Then, the developed simulation method is applied to a fire simulation of a steel moment resisting frame where one of the columns is assumed to be under temperature load following ISO834 fire curve. The results show that the proposed hybrid simulation method can replicate the numerical prediction, thus can be applied to 2 more challenging structural systems, such as the structural behaviour under fire load, which is computationally difficult using numerical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.