Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy, characterized by an almost complete loss of adipose tissue and severe insulin resistance. BSCL2 is caused by loss-of-function mutations in the BSCL2/SEIPIN gene, which is upregulated during adipogenesis and abundantly expressed in the adipose tissue. The physiological function of SEIPIN in mature adipocytes, however, remains to be elucidated. Here, we generated adipose-specific Seipin knockout (ASKO) mice, which exhibit adipocyte hypertrophy with enlarged lipid droplets, reduced lipolysis, adipose tissue inflammation, progressive loss of white and brown adipose tissue, insulin resistance, and hepatic steatosis. Lipidomic and microarray analyses revealed accumulation/imbalance of lipid species, including ceramides, in ASKO adipose tissue as well as increased endoplasmic reticulum stress. Interestingly, the ASKO mice almost completely phenocopy the fat-specific peroxisome proliferator–activated receptor-γ (Pparγ) knockout (FKO-γ) mice. Rosiglitazone treatment significantly improved a number of metabolic parameters of the ASKO mice, including insulin sensitivity. Our results therefore demonstrate a critical role of SEIPIN in maintaining lipid homeostasis and function of adipocytes and reveal an intimate relationship between SEIPIN and PPAR-γ.
Background: Exosomal circular RNAs (circRNAs) in peripheral blood are considered as emerging diagnostic biomarkers of cancers. Owing to the lack of sensitive and specific biomarkers, a large number of colorectal cancer (CRC) patients were diagnosed in advanced stages leading to high mortality. This study aimed to identify circulating exosomal circRNAs as novel diagnostic biomarkers of CRC.Materials and Methods: Candidate circRNA was selected by integrating analysis of Gene Expression Omnibus (GEO) database with online program GEO2R. A total of 170 patients and 45 healthy controls were enrolled to assess the diagnostic value of circRNAs for CRC. Exosomes isolated from the serum of participants and cell cultured media were confirmed by transmission electron microscope (TEM), Nanoparticle Tracking Analysis and western blot. The expression and the diagnostic utility of circRNA were tested by qRT-PCR and receiver operating characteristic (ROC) analysis, respectively.Results: The circulating exosomal hsa-circ-0004771 with most abundant among the top ten differentially expressed circRNAs (fold change ≥1.5) was selected for further study based on the results of GEO dataset analysis. The up-regulated exosomal hsa-circ-0004771 was verified in serum of CRC patients compared to healthy controls (HCs) and patients with benign intestinal diseases (BIDs) by qRT-PCR. The area under the ROC curves (AUCs) of circulating exosomal hsa-circ-0004771 were 0.59 (95%CI, 0.457–0.725), 0.86 (95%CI, 0.785–0.933) and 0.88 (95%CI, 0.815–0.940) to differentiate BIDs, stage I/II CRC patients and CRC patients from HCs, respectively. The AUC was 0.816 (95%CI, 0.728–0.9) to differentiate stage I/II CRC patients from patients with BIDs. In addition, the elevated expression of exosomal hsa-circ-0004771 in the serum of CRC patients was tumor-derived. It was found that the expression of exosomal hsa-circ-0004771 was down-regulated expression of in the serum of postoperative CRC patients as well as cultured media of CRC cells treated with GW4869.Conclusions: Circulating exosomal hsa-circ-0004771 was significantly up-regulated in CRC patients and served as a novel potential diagnostic biomarker of CRC.
BackgroundAngiopoietin-like protein 3 (ANGPTL3) is a major lipoprotein regulator and shows positive correlation with high-density lipoprotein-cholesterol (HDL-c) in population studies and ANGPTL3 mutated subjects. However, no study has looked its correlation with HDL components nor with HDL function in patients with type 2 diabetes mellitus (T2DM).MethodsWe studied 298 non-diabetic subjects and 300 T2DM patients who were randomly recruited in the tertiary referral centre. Plasma levels of ANGPTL3 were quantified by ELISA. Plasma samples were fractionated to obtain HDLs. HDL components including apolipoprotein A-I (apoA-I), triglyceride, serum amyloid A (SAA), phospholipid and Sphingosine-1-phosphate were measured. HDLs were isolated from female controls and T2DM patients by ultracentrifugation to assess cholesterol efflux against HDLs. A Pearson unadjusted correlation analysis and a linear regression analysis adjusting for age, body mass index and lipid lowering drugs were performed in male or female non-diabetic participants or diabetic patients, respectively.ResultsWe demonstrated that plasma level of ANGPTL3 was lower in female T2DM patients than female controls although no difference of ANGPTL3 levels was detected between male controls and T2DM patients. After adjusting for confounding factors, one SD increase of ANGPTL3 (164.6 ng/ml) associated with increase of 2.57 mg/dL cholesterol and 1.14 μg/mL apoA-I but decrease of 47.07 μg/L of SAA in HDL particles of non-diabetic females (p < 0.05 for cholesterol and SAA; p < 0.0001 for apoA-I). By contrast, 1-SD increase of ANGPTL3 (159.9 ng/ml) associated with increase of 1.69 mg/dl cholesterol and 1.25 μg/mL apoA-I but decrease of 11.70 μg/L of SAA in HDL particles of female diabetic patients (p < 0.05 for cholesterol; p < 0.0001 for apoA-I; p = 0.676 for SAA). Moreover, one SD increase of ANGPTL3 associated with increase of 2.11 % cholesterol efflux against HDLs in non-diabetic females (p = 0.071) but decrease of 1.46 % in female T2DM patients (p = 0.13) after adjusting for confounding factors.ConclusionsANGPTL3 is specifically correlated with HDL-c, apoA-I, SAA and HDL function in female non-diabetic participants. The decrease of ANGPTL3 level in female T2DM patients might contribute to its weak association to HDL components and function. ANGPTL3 could be considered as a novel therapeutic target for HDL metabolism for treating diabetes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0450-1) contains supplementary material, which is available to authorized users.
Aim: Keratin 6A is a type II cytokeratin which is important in forming nail bed, filiform papillae, the epithelial lining of oral mucosa, and esophagus; recently, keratin 6A was found hyperexpressed in different types of cancer. But, the biological function of keratin 6A in lung adenocarcinoma still remains unclear. Therefore, in current study, we investigated the biological role of keratin 6A in lung adenocarcinoma. Methods: By utilizing The Cancer Genome Atlas database, we investigated the expression profile of keratin 6A and its relationship with other clinical parameters in lung adenocarcinoma. The biological function of keratin 6A in lung adenocarcinoma was also investigated by using A549 and PC-9 lung cancer cell lines in vitro. Results: Our data indicate that, compared with normal lung tissue samples, keratin 6A was hyperexpressed in lung adenocarcinoma. Moreover, keratin 6A hyperexpression was positively correlated with lymph node positive and aggressive tumor T stage. Keratin 6A knockdown inhibited the cell proliferation, migration, and colony formation ability but not cell death in lung adenocarcinoma cells. In addition, we found keratin 6A exerted its phenotype via promoting cancer stem cells (CXCR4high/CD133high) transformation and epithelial–mesenchymal transition. Conclusion: In conclusion, current study suggests that hyperexpressed keratin 6A in lung adenocarcinoma promotes lung cancer proliferation and metastasis via epithelial–mesenchymal transition and cancer stem cells transformation.
IQGAP1 is a scaffolding protein that can regulate several distinct signaling pathways. The accumulating evidence has demonstrated that IQGAP1 plays an important role in tumorigenesis and tumor progression. However, the function of IQGAP1 in esophageal squamous cell carcinoma (ESCC) has not been thoroughly investigated. In the present study, we showed that IQGAP1 was overexpressed in ESCC tumor tissues, and its overexpression was correlated with the invasion depth of ESCC. Importantly, by using RNA interference (RNAi) technology we successfully silenced IQGAP1 gene in two ESCC cell lines, EC9706 and KYSE150, and for the first time found that suppressing IQGAP1 expression not only obviously reduced the tumor cell growth, migration and invasion in vitro but also markedly inhibited the tumor growth, invasion, lymph node and lung metastasis in xenograft mice. Furthermore, Knockdown of IQGAP1 expression in ESCC cell lines led to a reversion of epithelial to mesenchymal transition (EMT) progress. These results suggest that IQGAP1 plays crucial roles in regulating ESCC occurrence and progression. IQGAP1 silencing may therefore develop into a promising novel anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.